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Abstract

In this paper an automatic tuning procedure for a cascade position control architecture of general mechatronic systems is
presented. The proposed procedure firstly estimates the transfer function of the system by analysing its open-loop response to a
signal specifically designed in order to satisfy the system position, velocity and torque constraints. Then, if present, oscillatory
behaviours are detected by finding the (anti)resonances of the frequency response. Parametric tuning rules are eventually defined
for the PID controllers and for the biquadratic filters. Results obtained by implementing the procedure on a Hardware In the Loop
setup demonstrate the effectiveness of the method.
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I. INTRODUCTION

The tuning of Proportional-Integral-Derivative (PID) controllers is a crucial task when approaching a new system. While
experienced operators can effectively refine the tuning of controller parameters depending on the specific application, it is
generally non-trivial to guess a first set of values. Moreover, when the system to be controlled is subject to varying dynamics
over the time, for example mechatronics systems with varying inertia loads, a change in the controllers parameters has to be
done frequently, so that an automated tuning would be desirable.
Many PID autotuning techniques for process control applications can be found in the literature [1]. On the contrary, autotuning
techniques for the control of mechatronic systems are still a relevant research topic [2]. The generalization of the process control
autotuning procedures to the control of mechatronic systems is generally limited by some important differences between the
two fields of application. In particular, mechatronic systems are characterized by constraints on torque, acceleration, velocity
and position that can depend on the actuator, on the application or on both of them. Moreover, mechatronic systems are affected
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by a series of nonlinearities like static and dynamic friction, backslash etc. which complicates the autotuning procedure.
Nonetheless, an advantage of this kind of systems is that a generic mechatronic system can be described, for control purposes,
as a series of bodies and transmissions characterized by inertias and elasticities; an automatic approach for the tuning of the
controllers for mechatronic systems should therefore exploit this model during the identification phase.
In any case, an autotuning procedure should satisfy some common requirements, such as a minimum involvement of the
operator (who, ideally, should not be involved at all in the procedure) and a minimum execution time, in order to reduce the
overall commissioning costs.
In the context of autotuning for mechatronic systems, various techniques have been proposed in the recent years. In [3]–[5]
variations of Pseudo-Random Binary Signals (PRBS) are applied as a torque input to the systems in order to excite all the
frequencies. The input torque signal and the output signal (which can be either a velocity or position signal measured on the
motor or on the load side) are then processed using a simple Fast Fourier Transform (FFT) method or the Welch method [3].
While this approach gives good results on unconstrained systems, the limits of the system are generally not taken into account
when defining the input signal.
An alternative to PRBS signal is the use of a swept sine wave with frequencies that vary in the range of interest of the specific
application. In [6], [7] a methodology that exploits the swept sine wave deals with non-linearities and measurement noise.
In [8] a two stage approach is proposed. First, an estimation of the parameters that characterize the slow dynamics of the system
(inertia, static and viscous frictions) is obtained by filtering a PRBS signal with a low-pass filter. Then, the high frequencies
dynamics parameters (that is, the elasticities) are estimated using a non-filtered PRBS signal. Also in this case, the constraints
are ignored, limiting the applicability of the procedure to unconstrained systems.
Once a model of the system is obtained (usually, in the form of a transfer function), the controller parameters have to be tuned.
In [9], [10] PID controllers are tuned in order to explicitly compensate for the presence of oscillations. Another approach, used
in [11], is to delete the oscillatory dynamics of the system by filtering the command signal with low-pass, notch or bi-quadratic
filter.
Regarding the tuning of the PID parameters, an optimization based procedure is proposed in [8]. Although an optimization
brings a good control performance, it usually involves a computational effort that is not sustainable by industrial drives and
PLCs.

In this paper, we extend the method presented in [12], where an autotuning procedure for the velocity control of a general
mechatronic system is proposed. This procedure explicitly takes into account the (torque, velocity and position) limits of the
system, designing an open-loop exciting signal accordingly to those limits and by assuming matched load and motor inertias
as explained in [13]. Although the results of [12] were promising, we extend the methodology by modifying the procedure,
changing the definition of the exciting signal mixing it with a PRBS approach and by adding the tuning of the position
control loop and of filters that delete the oscillations on the load side. The transfer function identification is also modified by
fusing the analytical approach of [6] with a nonlinear optimization approach for a rapid convergence. The proposed autotuning
methodology has been implemented on a Hardware-In-the-Loop (HIL) setup, and experimental results are here presented.

The paper is structured as follows: in Section II the proposed autotuning methodology is delineated showing its flowchart
and the various steps are explained in detail; in Section III the experimental setup is described, while in Section IV the obtained
experimental results are shown and analysed. Section V concludes the paper.

II. PROPOSED METHODOLOGY

The flowchart of the proposed procedure is shown in Figure 1. First, an initial acquisition of the velocity of the system is
analysed in order to determine the noise affecting its measurement. Then, a torque ramp with a slight gradient is given to the
system in order to identify the static friction torque K̂f , determined as the value of the torque when the measured velocity
overcomes the maximum estimated value of the noise for a meaningful number of acquisitions. The input slope gradient ∆τ
can easily be defined as a percentage of the full-scale torque τmax, so that

∆τ =
τmax
Ns

, (1)

where Ns is the number of sampling periods necessary to reach the maximum torque τmax. In this paper the value of Ns is
arbitrarily set to 10000. This value that can be increased or decreased depending on the relevance of the static friction on the
particular system.
After having estimated K̂f , an input signal is given to the system in order to obtain and analyse its response. To generate
the input torque/force signal, we suppose to have some position, speed and torque constraints denoted as θ̄, ¯̇

θ and τmax,
respectively. The open -loop torque signal to give to the system is computed as shown in Figure 2. Different cycles are
repeated with different applied torques until the identification time exceeds the maximum identification time Tend, defined as
the inverse of the required frequency resolution ∆f . In particular, for each cycle, at the beginning, the cycle torque τnew is
computed randomly between the estimated static friction torque value K̂f and the maximum applicable torque τmax. Then, a
cycle based on the following four parts is performed:

• positive torque τnew,
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Fig. 1. Flowchart of the proposed autotuning procedure.

Fig. 2. Input torque trajectory generation flowchart.

• negative maximum torque −τmax,
• negative torque −τnew,
• positive maximum torque τmax.

In particular, the maximum cycle torque τnew is applied to the system until the first condition (namely C1) is met; then a
deceleration phase with maximum negative torque is performed until condition C2 is met; after that, a negative maximum
cycle torque is applied to the system until condition C3 is met; finally, a negative deceleration phase with maximum positive
torque is performed until condition C4 is met o until the stop signal is received. These conditions are set in order to satisfy
the imposed constraints.
In particular, condition C1 is verified when the current speed overcomes the maximum speed or when the actual position is
equal to half of the distance between the initial position θ0 and the maximum one. Condition C2 is verified when the current
speed becomes negative. Condition C3 is the symmetric of C1. Condition C4 is verified when the current speed becomes
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Fig. 3. Proposed position control scheme: cascade control with PID controllers C1, C2, the biquadratic filters F1, F2 and the friction feedforward compensator
ff .

positive again. Formally, it is

C1 =

{
TRUE if θ̇ ≥ ¯̇

θ OR θ ≥ θ̄ + θ0
2

− θ0

FALSE otherwise

C2 =

{
TRUE if θ̇ ≤ 0

FALSE otherwise

C3 =

TRUE if θ̇ ≤ − ¯̇
θ OR θ ≤ −

(
θ̄ + θ0

2
− θ0

)
FALSE otherwise

C4 =

{
TRUE if θ̇ ≥ 0

FALSE otherwise

(2)

The measured velocity is stored together with the applied torque signal from which the static friction torque K̂f is subtracted,
as the model that will fit the data acquisitions does not include the presence of nonlinearities. These data are then analysed with
the Welch method [14] using a Blackman windowing, obtaining an estimation of their spectral density. The transfer function
between the torque input and the velocity of the motor is then estimated using a nonlinear Levenberg–Marquardt optimization
algorithm [15]. While in [3] the same approach is used for identifying the analytical form of the transfer function, the choice
for the initial values of the model parameters is unclear. As the Levenberg–Marquardt algorithm might find a local minumum,
a wrong choice of the initial values can bring to the wrong estimation of the transfer function.
For the correct determination of a good set of initial parameters for the optimization algorithm, the resonance and anti-
resonance peaks of the spectral density are identified by detecting the maximum of the product of the prominence and the
width of each phase peak. Then, the resonance and antiresonance frequencies can be approximately identified assuming that
at those frequencies their phase is the peak phase minus half of its prominence. Then, the frequency of the mechanical pole
of the system can be identified as the frequency for which the magnitude of the spectral density decreases of more than 3 dB.
Once those three points have been found, an analytical solution for the identification of the transfer function is presented in [6].
Due to possible noise on the spectral density data, this method can give unreliable results, in particular regarding the system
low-frequency gain. Nonetheless, the parameters resulting from this analytical solution represent a good starting point for the
nonlinear Levenberg–Marquardt optimization.
The theoretical transfer function between torque and motor velocity of a two mass system, identified with the aforementioned
techniques, is in the form:

G(s) =
K

s+ p

s2 + 2ξaωas+ ω2
a

s2 + 2ξrωrs+ ω2
r

. (3)

Once the model of the system has been obtained, the effects of the oscillatory mode can be compensated using bi-quadratic
filters. The proposed control architecture, shown in Figure 3, has two bi-quadratic filters F1 and F2, one filtering the setpoint
and the other one filtering the output of the internal velocity PID controller. The bi-quadratic filter acting inside the velocity
control loop deletes the system resonance and antiresonance, obtaining the normalized filter

F2(s) =
ω2
a

ω2
r

s2 + 2ξrωrs+ ω2
r

s2 + 2ξaωas+ ω2
a

(4)

so that, defining

K̄ := K
ω2
a

ω2
r

,
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the filtered system transfer function becomes of first order in the form

G(s)F2(s) =
K̄

s+ p
. (5)

Subsequently, a velocity PI controller in the form

C2(s) = Kp2

(
1 +

1

Ti2s

)
is tuned based on (5) imposing a phase margin φm and a cutoff frequency ωc. The resulting PI parameters are

Ti2 =
tan

(
φm − π

2 + arctan
(
ωc

p

))
ωc

Kp2 =
Ti2

K̄
√

1 + T 2
i2
ω2
c (ω4

c + ω2
cp

2)

(6)

While the closed loop control of the motor can guarantee good performance on the motor side, the performance on the load
side could even decrease if only the motor is taken into account. In fact, a resonance is present in the transfer function that
describes the relation between the position of the motor and the position of the load. Even if this transfer function can not be
identified as, in the great majority of mechatronic systems, there is no sensor on the load side, its resonance can be obtained
knowing that, when the system is controlled in open loop, it deletes the antiresonance in (3). Therefore, in order to delete this
resonance, the setpoint is filtered by a second bi-quadratic filter F1. The parameters of F1 can be easily obtained by imposing
the same zeros of (3) and two real poles that have the same distance from the origin with respect to the two complex zeros,
obtaining the normalized filter

F1(s) =
s2 + 2ξaωas+ ω2

a

s2 + 2ωas+ ω2
a

. (7)

Finally, the position PID controller need to be tuned. In accordance to the prescriptions that can be found in literature, the
outer control loop of a cascade control should be at least five times slower than the internal loop. Choosing a proportional
position controller, the position loop cutoff frequency ωcp can be set as, for example, one tenth of the velocity loop cutoff
frequency ωcv . The position controller C1 is therefore chosen as a proportional controller

C1(s) = Kp1 .

By imposing

ωcp = 0.1ωcv (8)

we obtain

Kp1 =
1

Kp2K̄

√
ω4
cpT

2
i2

(P +Kp2K̄)2 + ω2
cp(Kp2K̄ + Ti2ω

2
cp)2

T 2
i2
ω2
cp + 1

. (9)

Moreover, as shown in Figure 3, a feedforward signal compensates for the static friction: being θ̇ref the reference velocity
of the internal loop, the feedforward signal ff is calculated as

ff = K̂f sign(θ̇ref ). (10)

III. EXPERIMENTAL SETUP

The proposed autotuning procedure has been tested on a HIL setup. The experimental setup consists of two brushless
servomotors coupled by means of a rigid transmission, two Gefran ADV200S servo drives, a Real-time Controller with
REXYGEN software platform [16] and a standard PC that runs MatlabTM 2017b. The Real-Time Controller is implemented
on hardware developed as ”Building Block 1” in the context of a project called I-MECH [17], and communicates with Gefran
Drives by means of the EtherCAT protocol, while communication with the Matlab script running on the standard PC use
HTTP REST API provided by REXYGEN. The generation of the exciting signal is managed by the drivers, which send to
the controller the measured motor position and velocity, the torque signal and the state of the procedure over the EtherCAT
with 1ms period. REXYGEN is responsible for the storing of the measurements and for the direct communication with the
drives, setting a flag for the execution of the autotuning procedure and changing the control parameters after the procedure
is completed. The stored signals are sent to Matlab by means of a HTTP request over standard Ethernet and TCP/IP. The
elaboration of the signals and the computation of the model of the system and the control parameters is managed in Matlab
environment on a standard PC, simulating the presence of a centralized supervisor which is responsible for the autotuning
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Fig. 4. Experimental HIL setup.

Fig. 5. Two-inertia system.

procedure and data analysis. The whole procedure is completely automatic and is activated by launching a Matlab script.
It has to be noted that the code running on Matlab has been tested for auto code generation compatibility and could, for
example, run into REXYGEN-based device or other industrial controllers only, so that the particular environment on which it
runs does not entail a loss of generality, meaning that the procedure retains its orientation to industrial field applications.
The experimental setup is shown in Figure 4. The presence of a second motor allows the simulation of a generic mechatronic
systems: the second motor can indeed react to a variation of its velocity opposing the reaction torque of the mechatronic
system, whose dynamics is simulated in real-time on the driver.
For the purpose of testing the autotuning procedure, the simulated system consists of a two-inertia system, like that shown in
Figure 5, characterized by an elastic transmission with a viscous friction C and an elasticity K that connects the motor with an
inertia of Jm to a load of inertia JL; a viscous friction with a coefficient Bm is applied to the rotation of the load. Moreover,
a static friction with a coefficient Kf is present. For a more realistic approach, the system is also characterized by limits on
its maximum position displacement θmax, its maximum velocity θ̇max and the maximum motor torque τmax. The model that
has just been described is a standard model for a generic mechatronic system with one oscillatory mode. The parameters of
the simulated system are shown in Table I. The correspondence between the model in Table I and the system running on the
HIL setup has been obtained by compensating the internal frictions of the experimental setup. The transfer function of the
system, considered the torque as the input and the velocity as the output, can be written in the form (3) as

G(s) =
126.58(s2 + 0.3797s+ 125.9)

(s+ 0.1709)(s2 + 0.9304s+ 253.1)
. (11)
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Parameter Value Parameter Value

C 0.003 K 1.0
Jm 0.0079 kgm JL 0.0079 kgm
Bm 0.0027 Kf 0.3
θmax 300 rad θ̇max 280 rad/s
τmax 5 Nm

TABLE I
PARAMETERS OF THE SYSTEM SIMULATED ON THE HIL SETUP.
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Fig. 6. Static friction identification phase. The maximum static friction torque is identified as the torque given to the system when the velocity exceeds the
limits (dashed red line), which value is calculated as the maximum value of the noise on the velocity multiplied by a safety factor of 5.

IV. EXPERIMENTAL RESULTS

The autotuning procedure proposed in Section II has been implemented on the HIL setup, and the results are shown hereafter.
As the maximum torque of the motor is τmax = 5 Nm, the static friction identification phase obtained by setting Ns = 10000
in (1) is shown in Figure 6. The resulting identified static friction coefficient is K̂f = 0.2603 Nm. The identification procedure
is then executed for a total time Tend = 80 s, which gives a frequency resolution of

∆f =
1

Tend
= 0.0125 Hz.

The signals are sampled with a sampling period of Ts = 0.001 s, which, for the Nyquist sampling criterion, gives a maximum
identifiable frequency of 500 Hz. Nonetheless, the obtained spectral information with the Welch method has been limited in
the range [0.0125, 100] Hz, being 100 Hz a reasonable upper limit for a digital filter running on a 1 ms sampling period
controller. The trajectory of the system is shown in Figure 7. It must be noted that, as expected, the limits of the systems are
always respected during the trajectory.
From the spectral density resulting from the Welch analysis, shown in Figure 8, the three points needed for the analytical

transfer function identification of [6] are identified (red squares in Figure 8). The resulting transfer function parameters are
then used as the initial guess for a Levenberg–Marquardt optimization, which results in the transfer function shown in Figure
8, which can be expressed in the form (3) as

Ĝ(s) =
92.724(s2 + 0.6957s+ 125.9)

(s+ 0.1996)(s2 + 0.3407s+ 258.5)
. (12)

In Figure 8 the identified system Ĝ is compared with the spectral density resulting from the Welch analysis and the theoretical
system transfer function G.
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Fig. 7. Trajectory of the system during the autotuning procedure. The limits of the system are shown in dashed red line.
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With the estimated transfer function of the system, the velocity cutoff frequency ωcv and phase margin φm are set to ωcv = 30
rad/s and φm = 85°, and the velocity PI controller results in

C2(s) = 0.6614

(
1 +

1

0.3539s

)
(13)

while the filters result in

F2(s) =
0.487s2 + 0.1659s+ 125.9

s2 + 0.6957s+ 125.9
(14)

and

F1(s) =
s2 + 0.6957s+ 125.88

s2 + 22.44s+ 125.88
. (15)

The position controller is obtained with (9) and results in

C1(s) = 3.1646. (16)

The position closed loop control of the system is obtained by filtering the position reference, following the scheme in Figure
3.

In order to verify the performance of the autotuning procedure, a series of steps has been given as a reference signal to the
system. It has to be noted that, for the position control of mechatronic systems, steps in the reference are normally avoided
in conditions of normal operation, as they usually generates saturations on the actuators, and other trajectories are preferred
(e.g. 7 traits trajectories). Nonetheless, the analysis of the step responce is a de-facto benchmark test for the analysis of system
dynamics, and it is here used in order to address the closed-loop dynamics of the controlled system. Figure 9(a) shows the
position response of the system with the tuned velocity and position PID controllers, but without the filters F2 and F1. The
elasticity of the transmission generates a series of oscillations on the load side. In Figure 9(b) the filters F2 and F1 are activated,
and the oscillation is greatly reduced both on motor and on load side.

V. CONCLUSIONS

In this paper a new procedure for the cascade control autotuning of a general oscillating mechatronic system has been
presented. In this procedure, once the static friction is detected, an open loop procedure is employed, where a signal that
explicitly takes into account the system limits such as maximum torque, velocity and position is used to excite the system
dynamics. The spectral density of the system is obtained with the Welch method with a Blackman windowing of the input signal
and the corresponding velocity trajectory. The (anti-)resonance frequencies are detected by analysing prominence and width
of the phase response; an analytical method first and a nonlinear optimization secondly give the identified transfer function of
the system, which is then used to tune the velocity and position controllers as well as the filters which delete the oscillatory
response of the system. The application of the proposed procedure on a HIL setup shows its effectiveness in reducing load
oscillations without sensors on the load side and respecting the imposed limits during the identification procedure.
Future developments of the proposed procedure could include the autotuning of multi-modes oscillatory systems and the
definition of a performance assessment strategy that will activate autonomously the autotuning procedure when the performance
degrades.
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(a) Closed loop position control without filters.
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(b) Closed loop position control with filters.

Fig. 9. Step response of the closed loop control with (a) and without (b) the filters. Position reference (black dotted line), motor position (blue dashed line),
load position (red solid line) and motor torque (green solid line).
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