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1 Introduction 
The I-MECH project, which is about “Intelligent Motion Control Platform for Smart Mechatronic Systems”, has been 
divided into 8 workpackages. 
· WP1 (project management) and WP8 (dissemination, communication) cover the project process and not the 

technical aspects. 
· WP2 is about business requirements and defines a high level architecture, dividing the platform into 3 layers, but 

doesn’t cover much technical implementation details either. 
· WP3, WP4 and WP5 elaborate and refine the requirements from WP2 for each layer separately, enabling the 

development of building block components. 
· WP7 lists a few existing pilots, demonstrators and use cases, on which selected building block implementations 

are integrated, tested and verified. 
 
None of these work packages however addresses the fundamental topic how the project mission “novel intelligence” 
(which is refined in D2.3) has been implemented by the I-MECH platform. This is the subject of WP6, and this 
document describes the I-MECH methodology that serves as a (mandatory) guideline for specifying, developing, 
implementing, testing and deploying the various I-MECH building blocks. 
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2 Principles of model based techniques 

2.1 Model Based Design 
A good definition of model based design can be found on Wikipedia: 
 
Model-Based Design (MBD) is a mathematical and visual method of addressing problems associated with designing 
complex control, signal processing and communication systems. It is used in many motion control, industrial 
equipment, aerospace, and automotive applications. Model-based design is a methodology applied in designing 
embedded software. 
 
In model-based design of control systems, development is manifested in these four steps: 

1. modeling a plant, 
2. analyzing and synthesizing a controller for the plant, 
3. simulating the plant and controller, and 
4. integrating all these phases by deploying the controller. 

 
[source: wikipedia] 
 
More information about model based design principles and about systems engineering can be found on the 
extensive website https://www.incose.org/. 
 
In the scope of I-MECH, which aims at augmented intelligence in the field of advanced motion control, model based 
design plays an essential role. 
 
More specifically, the advanced motion control system can be seen from different viewpoints: 

· model viewpoint: the physics of the plant and the mathematics of the controller are modeled 
    (covering above-mentioned steps 1-3) 

· deployment viewpoint: this view describes the physical sensors, actuators and computing units 
    on which the controller is deployed 

· test viewpoint:  this view describes the configurations and steps in which the controller is 
    simulated, integrated and tested (see section 2.4 for different test configurations) 

2.2 Modeling and simulating the plant and controller 
A generic model viewpoint of a controller and plant is shown in Figure 1. In this figure, the controller model tries to 
‘manipulate’ the plant, e.g. by applying a force [N]. The plant simulator model takes physical properties into account 
(mass, friction, damping, …) and calculates the resulting displacement [m] which in turn is measured by the 
controller.  
 

 
Figure 1: Generic model of a controller and plant 
 
The process of modeling is an iterative process. First, the plant simulator model is drawn in more details and further 
refined until it sufficiently represents the real physical plant. This includes modeling the (expected) disturbances 
originating from external sources. Then the model of the controller is developed. This controller model aims to ‘tame 
the physics’ of the plant such that the measured values remain within acceptable limits. 
 

https://www.incose.org/
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In order to do so, the model developer has the following needs: 
· A toolbox with components that can be used to compose and extend the controller and plant models 
· A method for defining arbitrary testpoints inside the (whitebox) controller and plant models 
· A method for defining arbitrary injection points inside the (whitebox) controller and plant models 
· While running a simulation, a method for tracing the values of the testpoint signals and simultaneously injecting 

testdata at the injection points 
· A toolbox with functions and methods to analyze and visualize the resulting time-traces from the simulations, and 

to compute the optimized controller parameters; possibly this is extended to a simulated system identification 
· A method for changing (tuning) the controller parameters (auxiliary data); in this development stage the 

distinction between machine-specific and common parameters is not relevant yet but can be anticipated 
 
The model developer will simulate all scenarios of the controller, and check if the simulated plant behaves as 
required. When the results are satisfactory, the model developer can proceed with the next steps – outlined in the 
sections below. 

2.3 Automatic Code Generation 
The previous step (modeling and simulating the plant and controller) results in models, which only ‘live’ inside a 
simulation tool. In the next step, these models must be transformed into executable lines of code. This step can be 
performed manually or automatically from the model. 
 
Automatic code generation from the controller models gives quite a few significant benefits compared to handing 
over the models to a software engineer for manual coding: 

· Functional equivalence between the models and the generated code 
· Reduced development effort because no/little manual coding is needed 
· Faster development iterations are possible, because automatic code generation is fast  
· No coding errors due to human misinterpretations and mistakes 

 
Apart from the models, also the controller-specific interface code can and should be generated automatically. The 
main advantage is that when an interface changes, the generated code on both sides of the interface is automatically 
updated and reflecting these changes. 
 
It is not true that all the code can be generated automatically. Coding of the certain external interfaces will remain 
manual work, for example in the framework that provides the basis in which the generated code can run. In addition, 
integrating legacy and some common code into the models will partly remain manual work (e.g. S-Functions are 
used for integrating “external” C/C++ code into Simulink). 
 
In most cases where motion is involved there will be a supervisory entity, responsible for system behavior. Such an 
entity, located in layer 3, sends commands to the motion controller and queries the status. Therefore, before starting 
with code generation, the model of the layer 2 controller (as shown in Figure 1) needs to be extended with an 
interface to layer 3, as shown in Figure 2. The resulting model is then ready for code generation. 
 



 Doc ID  18041001R03 
 Doc Creation Date  10 apr 2018 

D6.2 Guideline of I-MECH methodology Doc Revision  02 
 Doc Revision Date  28 jun 2018 
 Doc Status  Released 
   

 

© 2018 ECSEL Joint Undertaking. – Print Date 29 jun 2018 PUBLIC  Page 8 of 25 
   
 

 

 
Figure 2: Generating code for simulation 
 
Note: SIL/PIL is explained in section 2.4 below. 
 
When the resulting generated C/C++/IEC61131 code is compiled, an executable is obtained that implements the 
same behavior as the model in Figure 1, including the plant simulator. This executable can run on the desired target 
platform. 
 
Subsequently, a 2nd model can be created. In this model, the plant simulator is replaced by model elements that 
represent the interface of the SW to HW physics transducers (sensors and actuators). 
 
 

 
Figure 3: Generate code for hardware-in-the-loop configuration 
 
Note: HIL is explained in section 2.4 below. 
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When the resulting generated C/C++/IEC61131 code is compiled, an executable is obtained that implements the 
same behavior as the model in Figure 2, as far as the controller and layer 3 interface are concerned. The plant 
simulator is missing; this executable now includes the access to the transducers. 
 
When executing these executables, the model developer has still the same needs as outlined in section 2.2 before. 
The executable (within its execution environment) thus needs to provide support for: 
· A method for defining arbitrary testpoints inside the (whitebox) controller 
· A method for defining arbitrary injection points inside the (whitebox) controller 
· While running the executable, a method for tracing the values of the testpoint signals and simultaneously 

injecting testdata at the injection points 
· A method for changing (tuning) the controller parameters (auxiliary data) 
 
At the same time, the aforementioned toolbox (with functions and methods to analyze and visualize the resulting 
time-traces from the simulations, and to compute the optimized controller parameters) must also process the data 
obtained from the executions. 
 
Altogether, the true external interfaces are broader and more comprehensive than what is modeled explicitly as an 
external interface in Figure 2 and Figure 3: Parameters and signals (testpoints) are external interfaces too, implicitly, 
and access should be possible from applications, scripts and tools in layer 3. 

2.4 Model Based Testing 
The basis of Model Based Design is that in any stage of a project the behavior of the modeled controller and plant 
can be simulated and tested. The following definitions are public property: 
 
MIL: Model-in-the-loop: The model (controller + plant) is simulated within the modeling environment. 
SIL: Software-in-the-loop: Code is generated from the model (controller + plant) and executed, however this 

code is not necessarily real-time and not necessarily run on the target platform. 
PIL: Processor-in-the-loop: Code is generated from the model (controller + plant), optimized for and executed 

on the target platform. The code is running in real-time but still includes the plant simulator. 
HIL: Hardware-in-the-loop: Code is generated from the model (controller only), optimized for and executed on 

the target platform in its final configuration. Depending on the project constraints, the target platform is 
attached to either: 
· a hardware simulation unit (code is generated from the plant model) 
· an experimental hardware test setup (functional equivalent to the final plant) 
· a standalone module of the final plant (in a safe environment) 
· the final plant (under safe operating conditions) 

2.4.1 The Functional Mock-up Unit (FMU) 
In the ITEA2 Modelisar project the FMI (Functional Mock-up Interface) was defined (https://fmi-standard.org/). 
 
A component which implements the FMI is called a FMU (Functional Mock-up Unit). A FMU contains: 

· Description of interface data (in a XML file) 
· Functionality (C-code or binary) 
· [optional] Solver (for co-simulation) 

 
A FMU often contains a model of a plant (with sufficiently required granularity) for simulation purposes. With FMI it is 
possible to combine multiple FMUs (from different vendors) and use them together in different simulation tools. Many 
simulation tools (including AMESim and Simulink) support FMI. 
 
Similarly, a FMU may also contain a controller model. Thus it is possible to model the controller and plant with 
different modeling tools, and use the FMU technology to combine them into a single simulation model within the 
preferred simulation tool. 
 

https://fmi-standard.org/
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With respect to code generation, it is important to notice that the functionality of the FMU should be provided in either 
source C-code or as a binary for all used platforms (including the target platform of the controller). 
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3 Model Based Design in the scope of the I-MECH 
architecture 

3.1 The I-MECH reference architecture 
The reference architecture is obtained from D2.3/D2.4 and shown in the figure below. 

 
Figure 4: I-MECH reference architecture (source: D2.3/D2.4, slightly modified) 
 
This reference architecture maps pretty well on the model based design paradigm described in the previous chapter. 
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Figure 5: Generic model of an I-MECH controller 
 
In Figure 5, the decentralized controller(s) are optional and may be absent, in which case all sensors and actuators 
are controlled centrally via the fieldbus. In section 3.3 the centralized versus decentralized control paradigm is further 
elaborated. 
 
Figure 5 shows the HIL configuration. When the plant simulator model is used (the PIL simulation or HIL simulation 
with a hardware simulation unit), a setup is obtained that can also be used in combination with Layer 3 software. This 
allows particularly for integration and testing of layer 2 software with layer 3 software in the absence of the plant 
hardware. Only the computing platform is needed, including the network infrastructure and optionally the hardware 
simulation unit setup. 

3.1.1 Access to parameters 
When executing a simulation or running a real controller of an I-MECH model as shown in Figure 5, the various 
applications in layer 3 need to have access to all kinds of “parameters” of the building block components that are 
found in all layers. 
 
Some parameters are “static” and immutable (determined during model design, when the code of the controller is 
compiled), while other parameters are “dynamic” and can be modified during runtime execution of the controller. This 
depends on the nature of the parameters involved. 
 
Typically, parameters are used for (but not limited to): 
· System configuration 
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o Static configuration (related to fixed system hardware setup) 
o Dynamic configuration (i.e. calibration, tuning, but also ‘adaptive’ system hardware setup) 

· System initialization 
· System control from application layer, system behavior (incl. trajectory commands) 
· System excitation (e.g. noise injection, error injection) 
 
Evidently, all these parameters need to be transmitted through the layer interfaces shown in Figure 5. 

3.1.2 Access to signals 
When executing a simulation or running a real controller of an I-MECH model as shown in Figure 5, the various 
applications in layer 3 need to have access to all kinds of “signals” of the building block components that are found in 
all layers. These signals include input, output, auxiliary and internal1 data. 
 
Some signals are “required” and access must always be available, while other signals are “optional” and access can 
be (temporarily) switched on/off during runtime execution of the controller. This depends on the nature and need of 
the signals involved. 
 
Generally the signals can be retrieved in the following ways: 
· Snapshot, a single signal value is queried 
· Single-shot trace, a time-series of signal values is obtained during a limited time interval (with trigger options) 
· Continuous trace, a time-series of signal values is obtained continuously 
 
Every signal value is provided with a time stamp. The above must be extendable for multiple simultaneous signals, in 
which case all values are sampled simultaneously at the same time stamp (if the hardware capabilities support this) 
or at the same controller execution step (in which case the time of the controller is provided). 
 
The continuous trace demands the highest communication performance and data bandwidth, since the signal 
acquisition and data streaming take place in real time, as opposed to the snapshot and single-shot trace where the 
signal acquisition can be buffered locally and transmitted at a lower data rate. 
 
It is up to the system designer to choose the proper signal acquisition approach within the constraints of the system 
performance capabilities. As a rule, all signals can be accessed in all possible ways, not restricted by the I-MECH 
architecture implementation but in accordance to the system designer’s choice. 
 
Typically, signals are used for (but not limited to): 
· Get system state 
· Get system snapshot, signal tracing, monitoring, data acquisition 
· Report events and notifications 
· Report errors and warnings 
 
Evidently, all these signals need to be transmitted through the layer interfaces shown in Figure 5. 

3.1.3 RAMI 4.0, Administration Shell and OPC UA 
RAMI 4.0 (Reference Architectural Model for Industrie 4.0) is an approach for smart and connected factory systems. 
It takes into account the factory topology (hierarchy and networks), layering architecture (from physical things to 
organization and business processes) and the product life cycle. 
 
In order to communicate and share information, the Administration Shell is the standardized digital representation 
of each manufacturing system within such a factory. 
 
OPC UA is an extensible, secure and platform independent framework that enables the communication between the 
Administration Shells. 
 
                                                      
1 It is strongly suggested to  
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See https://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/hm-2018-trilaterale-coop.pdf and 
https://opcfoundation.org/about/opc-technologies/opc-ua/ for more details. 
 
For I-MECH, the building blocks will also have an Administration Shell that represent the building block 
characteristics (such as control, status, configuration, electronic data sheet, self-reflection and etcetera) in the factory 
environment. This Administration Shell “hooks up” at layer 3, and connects to the underlying BB components in 
layers 1, 2 and 3. Also, the Administration Shells of the various BB’s will coexist with the Administration Shell of the 
entire I-MECH controller. 
 

   
Figure 6: Administration Shell of an I-MECH controller or I-MECH building block 
 

3.2 Location of building block components 
An I-MECH building block is not necessarily a single entity, but is typically a set of software and hardware 
components with distinct functions and roles (including simulators), which altogether fulfill the objectives of the 
applicable building block. Therefore, a building block can be represented by various model components that each 
have a dedicated function within the composed controller models. The building blocks components are not restricted 
to a single layer, but generally are distributed among the layers 1, 2 and 3. See Figure 7 for an example. 
 

https://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/hm-2018-trilaterale-coop.pdf
https://opcfoundation.org/about/opc-technologies/opc-ua/
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Figure 7: Example locations of building block components 
 
This section describes how and where building block components may appear in the models when the model based 
techniques are applied. 
 
Building blocks can have different topologies, not limited to a single appearance. 
 
Table 1: Components of BB’s and their locations 

Building Blocks Typical BB components 
BB1/BB10/BB11 Model components that provide entry points to the HAL or OS specific features. 
BB2 Model components that provide communication and data exchange with wireless sensors. 
BB4 Generally the image processing is expected to take place in FPGA, and the model based 

techniques described in this chapter are less usable – at least they fall in a different scope 
and technology domain. However, some front end interface to this BB4 is still needed, and 
model components will be provided for that purpose. 

BB5 Depending on how this BB5 is employed, it will either have some simple front end interface 
in layer 2 (at the simple side of the spectrum) or a more detailed front end interface in case 
the servo amplifier is modeled itself, possibly in conjunction with BB1. 

BB3/6/7/8/9 These building blocks will have model components that are typically used in the layer 2 
controller, but possibly also in the layer 1 decentralized controllers. In either case, these 
building block components need to be accessed, configured and controlled from matching 
building block components in layer 3. 

 

3.3 Centralized vs decentralized control paradigm 
The I-MECH methodology and architecture provide support for both the centralized and the decentralized control 
paradigms. It is up to the application architect to decide on the best solution. 
 
In the centralized control paradigm, all control algorithms run on a single computing unit. All sensor values are 
collected centrally and available to all controllers. Also data exchange between controllers is straightforward. 
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In the decentralized control paradigm, additional computing units are added to the fieldbus. Typically, these 
decentralized controllers can run at higher sample rates and achieve less sensor-to-actuator delays. It is possible to 
reduce data bandwidth consumption or EMI disturbances. 
 
Examples of decentralized controllers: 
BB1: Smart sensor modeling (especially with actuating capabilities) 
BB4: Vision sensor modeling 
BB5: Servo amplifier modeling (current, velocity and position loops; feedforwards) 

3.3.1 Decentralized controller modeling 
When modeling a decentralized controller, special attention must be paid to the internal parameters and signals of 
the decentralized modules. Depending on the needs of either the developer or the layer 3 software, these 
parameters and signals must be made available at layer 3, which means that these need to be communicated via 
fieldbus between layer 1 and layer 2. This requires explicit modeling of these parameters in the fieldbus (whereas the 
layer 2 internal parameters are already implicitly available to layer 3, as required in section 2.3). 
 
When setting up a decentralized controller, including a model of the fieldbus is initially not mandatory. In the 1st 
iteration, the fieldbus can be left out, while in the 2nd iteration the fieldbus effects can be simulated. Finally, the 
fieldbus simulator will be replaced by the separate master and slave interface components. This iterative approach 
becomes more apparent when the decentralized controller is simulated and tested as described in section 3.4.2 and 
shown in Figure 10. 

3.4 Automatic Code generation 

3.4.1 Generating code for executables 
As described in section 2.3, automatic code generation is an important step of model based engineering. 
 
In the first place, this applies to generated C/C++/IEC61131 code that can be compiled to an executable running on 
the centralized controller (layer 2), and optionally to additional executables running on the decentralized controllers 
(layer 1). 
 
Furthermore, from the models it is possible to generate code for the Administration Shell (OPC UA servers), to 
support the development of business applications (layer 3 and higher). 
 
Finally, in cases where OPC UA is not needed, it is possible to generate the applicable interfaces (in multiple 
programming languages), e.g. for development tools, the GUIs and so on (layer 3). 
 
In many cases, the generated code has an interface to (and must be tailored to) the OS and to the hardware 
(sensors and actuators, via a HAL). 
 
Layer 3 has a general purpose operating system (GP OS: e.g. Windows, Linux), layer 1+2 is real-time (RTOS: e.g. 
Erika3) with the access to the hardware components. The generated code for the centralized controller (layer 2) will 
be deployed on BB10/BB1, while the generated code for the optional decentralized controller (layer 1) will be 
deployed on BB1. 
 
 
 



 Doc ID  18041001R03 
 Doc Creation Date  10 apr 2018 

D6.2 Guideline of I-MECH methodology Doc Revision  02 
 Doc Revision Date  28 jun 2018 
 Doc Status  Released 
   

 

© 2018 ECSEL Joint Undertaking. – Print Date 29 jun 2018 PUBLIC  Page 17 of 25 
   
 

 
Figure 8: Code generation for centralized controller 
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Figure 9: Code generation for centralized and decentralized controllers 
 

3.4.2 Generating code variants for simulation and testing 
During the development process, there is the need of generating code for different successive simulation and testing 
configurations. 
 
These configurations are: 

· PIL: Central computing unit only (without fieldbus simulator) 
· PIL: Central computing unit only (with fieldbus simulator) 
· PIL: Including decentral computing units (implies fieldbus-in-the-loop) 
· HIL: Including the hardware (test) setup or a hardware simulation unit 
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Figure 10: Code generation steps 
 
Figure 10 shows these code generation steps (for the decentralized control paradigm). 

3.5 Engineering programming language 
During the development of a new system (or maintaining existing systems with an update) there are many system 
specific tests and calibrations that need to be performed. These tests and calibrations are typically performed by an 
application/integration engineer (who is not the end-user) with only “basic” programming skills and requiring more 
functionality than the end-user. To facilitate this integration work, an engineering programming language software 
interface is required. This allows the engineer to access the necessary functionality from the software layer in his 
engineering language environment of choice (typically Matlab or Python). This interface should provide typical 
functions to control the system and acquire the necessary data, which can directly be analyzed and visualized in the 
engineering language environment. 
 
Typical functionality of this engineering programming language covers: 
· System configuration 
· System initialization 
· System I/O functions 
· Single axis control 

o Axis state 
o Motion trajectory generation 

· Multi-axis or virtual axis control 
· System monitoring 
· Signal acquisition and system excitation 
· File I/O functions 
 
The engineering programming language defines and implements an interface in layer 3, with which all the 
components and building blocks can be accessed (via the communcation channel between the control client and the 
control server). 

3.6 Automatic model generation 
So far, it is assumed that the I-MECH model itself is the basis and starting point for model based engineering. 
However, there are development approaches to be considered in which parts of the model are automatically 
generated or configured on the basis of some “supermodel”. For example, think of a “factory description file” 
containing a “factory model” from which the interfaces and context of an I-MECH model are extracted. 
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For the I-MECH building blocks, it is important to realize that certain model aspects need to be imported from ‘other’ 
tooling, e.g. via XML files. Although this is not an anticipated and mandatory I-MECH requirement, an I-MECH 
building block yet needs to be flexible and compliant to such a way-of-working, irrespective of whether this import is 
performed manually or automatically. A standardized method for this WoW doesn’t exist yet, and is not within the 
scope of the I-MECH project. 

3.7 I-MECH intelligence functions 
The architecture in this chapter (Figure 5) has been mainly described from a physical or deployment viewpoint. A 
functional viewpoint of an I-MECH system is shown in Figure 11. 
 

 
Figure 11: Functional view of an I-MECH system 
 
The functional basis of an I-MECH system is process control, in which modules become smart modules when they 
are “self-descriptive”. At the factory level, an I-MECH system provides advanced functionality in the four main pillars: 
Process flow control, process monitoring, configuration and predictive maintenance. 
 
How these intelligence functions are mapped onto the architecture is elaborated in Figure 12.  
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Figure 12: Functional mapping to the layers of an I-MECH system for configuration and operation 
 
As Figure 12 shows, the intelligence functionality is vertically distributed among the various layers, and the 
applicable data is transferred via the available communication channels. 
 
For the EtherCAT fieldbus, fast data signals (process data) are transmitted via PDO messages, while slow data 
signals and static information can be transmitted using the acyclic CoE and FoE message protocols (or alternatively 
via EoE or AoE). 
 
The communication channel between control server (layer 2) and control client (layer3) realizes a further 
dissemination of the intelligence information and functionality. 
 
The OPC UA Administration Shells (see section 3.1.3) publish the intelligence information and functionality to the 
factory layers. 
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4 I-MECH Methodology 

4.1 Matlab/Simulink as the model based design tool 
Matlab/Simulink is chosen as the preferred model based design tool, because it is quite versatile in the field of 
motion control algorithm development, which includes simulation and code generation. Many companies seem to 
agree that MATLAB/Simulink is the de facto standard for these purposes. However, there must always exist an 
alternative way that makes it possible to disseminate I-MECH compliant results without being bound to a specific 
vendor (i.e. The Mathworks). Having said this, Matlab/Simulink will be used as the primary steppingstone tool. 
 
With Matlab/Simulink, it is possible to: 
· Create controllers, import building block parts from managed component libraries 
· Include models of the plant and then simulate the controllers 
· Generate code from the controllers, tailored to a dedicated RTOS and processing hardware platform 
· Generate code for layer 3 applications, for interfacing to the running real-time controllers 
· Collect, visualize and analyze data obtained from the running controllers 
All with the support of customizable Matlab scripts. 
 
Interfaces to Simulink blocks can be defined as Simulink buses. This applies to both input and output signals, as well 
as block parameters2 (auxiliary input data, run-time configurable) and auxiliary output data. 
 
Simulink also provides a few mechanisms for IP protection, when sharing Simulink blocks with end users. 
· Protected Simulink blocks restrict access of end users regarding viewing, simulating and code generation. 
· Furthermore, it is possible to convert Simulink blocks to S-function blocks with precompiled static libraries that 

can be shared with end users. 
· Static libraries are a good means to share IP protected contents anyway, also when these are not generated 

from Simulink block source code. 
 
Similar methods exist for Matlab functions requiring IP protection. 
· Protected Matlab function files obfuscate the source code (but does not encrypt them) 
· Compile Matlab functions into binary format 
· Compile non-Matlab functions as MEX files (for use in other Matlab functions) 

4.2 In scope of the product creation process 
A central aspect of new product development (NPD) is product design. The process of a product design is often 
executed following a phased way-of-working model. In Table 2 the potential role of the I-MECH methodology is put 
forward for the successive PCP phases. This table serves as a generic guidance, and can be tailored freely to the 
specific project and system characteristics. 
 
Table 2: I-MECH during the product creation process phases 

PCP phase I-MECH methodology activity Benefits 
Requirements Identify principal characteristics of the plant, and 

derive the principal requirements for the controller. 
Early capture of SMART plant 
characteristics and SMART 
controller requirements. 

Concept Consider and choose the (initial) controller 
architecture. 
Define and execute the main use case scenario (MIL 
simulation), with low granularity and only the “happy 
flow”. 

Principal requirements are 
implemented and simulated in a 
model. 
First embryonic feedback on 
concept. 

                                                      
2 For convenience, an encapsulating Simulink subsystem can provide the constant (not run-time but compile-time 
configurable) parameters in a mask, internally merge these parameters into the defined Simulink bus and wire this 
bus to the parameter port of the encapsulated Simulink block. 
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PCP phase I-MECH methodology activity Benefits 
System design While the system design evolves, the models of the 

plant and controller evolve at the same pace. 
The main use case scenario is extended with the 
most important secondary and alternative scenarios, 
including the critical exceptions. 
The granularity of the controller architecture and the 
MIL simulations is increased. 

The completeness of the system 
is secured in the completeness 
of the model. 
Feedback on the system 
regarding the system behavior 
as well as the capability to deal 
with exceptional situations. 

Component design The complete system is now extended towards 
complete components with detailed behavior and 
high granularity. 
Where necessary, detailed MIL simulations are 
executed – possibly using FMUs. 
BB components are added to the models in order to 
configure and tune the controller to meet the 
performance specifications in simulation mode. 

Feedback on the performance of 
the system is obtained by 
reliable and detailed 
simulations. This includes initial 
configuration and tuning of the 
controller. 
 

Realization In this phase, the final controller architecture is 
developed, including the final models of the controller 
and the plant. All necessary BB components are 
integrated into the realized design. 
All use case scenarios and the critical and major 
exceptions are implemented and simulated. 
An optional step is to execute SIL simulations, again 
possibly including FMUs. 

Detailed feedback on the 
controller functionality and 
performance. 
Most requirements can be 
tested in simulation mode. 

System Integration On the target computing platform, execute the real-
time PIL simulations (most likely excluding FMUs). 
Connect to the PIL simulation using the engineering 
programming language and the BB components in 
layer 3. 
Connect to the PIL simulation using the factory 
software. 

Integrated controller with factory 
software (in layer 3). 
Integrated controller with 
developer/configuration/tuning 
scripts and BB components in 
layer 3. 

On the target hardware with a (partial) field bus, 
execute the real-time HIL simulations (connected 
with a hardware simulation unit or with a “safe” plant). 

Tested controller with 
developer/configuration/tuning 
scripts and BB components in 
layer 3. 

Gradually connect the entire system hardware to the 
controller. 
Perform detailed hardware diagnosis using the 
engineering programming language. 

Tested controller with 
developer/configuration/tuning 
scripts and BB components in 
layer 3. 
Tested performance of the 
hardware. 

Verification Run verification tests. Most tests have already been 
addressed in previous PCP 
phase(s). 

Factory Integration Integrate system into the factory. 
Perform hardware and software integration. 

Most of software integration has 
already been performed in 
previous PCP phase(s) with PIL 
simulation on the target 
computing platform. 

Validation Run validation tests. Most of software validation has 
already been performed in 
previous PCP phase(s) with PIL 
simulation on the target 
computing platform. 
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PCP phase I-MECH methodology activity Benefits 
Maintenance 
(process monitoring, 
failure prediction, 
service-repair-
recalibrate-upgrade 
scenarios) 

Developer: 
· Use engineering programming language for 

online maintenance 
· Collect data for offline maintenance 
Operation: 
· Use BB components in layer 3 for all 

maintenance activities 

Adequate maintenance software 
for every situation. 

 
 
 
One may notice from Table 2 that a W-model is applied for the development lifecycle. As soon as a requirement is 
refined towards a specification, the requirement is tested using a simulation configuration as soon as possible, 
providing the earliest feedback as possible. The more detailed the specifications get, the more detailed the 
simulations get as well. 

4.3 In scope of the industrial stakeholders 
The tasks of the system engineer, who is applying the I-MECH methodology, are: 
· Make adequate choice among reference architectures (as a guide). 
· Add increasing granularity to controller and plant models. 
· Embed and run detailed (co-)simulations. 
· Compose the controller model from a library of building block components. 
· Perform early system integration and testing, based on MIL and SIL simulation configurations. 
 
The tasks of the control system integrator, who is applying the I-MECH methodology, are: 
· Perform pre-system integration and testing, based on PIL and HIL simulation configurations. 
· Perform system integration and factory integration, using the tools and BB components in layer 3. 
 
The tasks of the manufacturing and maintenance end user, who is applying the I-MECH methodology, are: 
· Perform (re)configuration, using the tools and BB components in layer 3, including the OPC UA administration 

shell. 
· Embed the motion control system into the process flow control of the factory. 
· Perform process monitoring and predictive maintenance, using the tools and BB components in layer 3. 
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5 Verifiable I-MECH methods 
Workpackage WP6 aims at integration, evaluation and validation of all the I-MECH technical developments, including 
the pilots set up in WP7. 
 
It does so by identifying the highest common factors (hcf’s) of all BB’s on the one hand, and defining test cases for 
them to be executed on one or more of the pilots. Generally, these test cases are unambiguous because these hcf’s 
have SMART functional requirements originating from the pilots. 
 
On the other hand, the I-MECH project strives to provide a reference motion control platform where besides the 
functional performance also the non-functional properties, such as usability, easy reconfigurability and traceability, 
are crucial. Therefore, also the effectiveness of the I-MECH methodology (including the reference architecture and 
delivered BB’s) will be measured and analyzed in WP6. 
 
The topics to be tested in WP6 cover: 
· Great usability of the platform and its tools at every complexity level 
· Flexibility and composability in creating tailored motion control systems 
· Coherence and compatibility between I-MECH components 
· State-of-the-art performance (on the pilots in WP7) 
· Model Based Design: Early development feedback, via simulations 
· Automatic code and interface generation from models 
· Adequate tooling, for architects, developers, integrators, testers and for operators, service engineers and plant 

maintenance personnel, satisfying all their needs 
· Easy reconfiguration and system update (includes auto-tuning and self-commissioning) 
· Clear and transparent monitoring and diagnostics of the motion control system state 
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