Model-based Processor-in-the-loop (PIL) Framework for Composable
Multi-core platforms

Abstract— This paper presents a model-based PIL simula-
tion framework targeting multi-core multi-application FPGA-
based embedded platforms. The process from model-based
simulations to implementing on the platform requires a target-
specified code generation, compile and execution. The presented
framework is able to automatically go through this process
and perform the PIL simulation starting from a model-based
environment in particular Simulink. It is also able to consider
the multi-application nature of the target platform, executing
the PIL simulation without interfering other applications. We
validate the functionality of the PIL framework by testing a
control systems application, using various PIL configurations.

I. INTRODUCTION

The new developments of digital processors and the
emerge of FPGA based embedded platforms enable digital
control systems researchers to design and implement faster
and more complex digital control algorithms [1]. However,
using such platforms for implementation of control systems
include some concerns. First, since traditional model-based
simulations is usually not sufficient to capture control dy-
namics, it is essential to include platform implementation in
rapid prototyping. Second, the time-critical nature of control
systems should be considered in the implementation, spe-
cially in multi-application and multi-core scenario where the
control application is not the only application implemented
on the platform [2]. In this case, platform implemenation of
control systems may be influenced by other applications on
the platform. Therefore, it is essential to guarantee that the
execution characteristics of control systems on the platform
is independent from other applications.

The process from model-based simulation to platform
implementation consists of platform-specific code generation
for the control application, upload and execution of the code
on the platform and inspecting the platform results [3]. The
need for a framework which can automate this process seems
essential to enable the rapid prototyping of the model-based
control design including platform implementation.

The simulations which include platform implementation
are hardware-in-the-loop (HIL) and processor-in-the-loop
(PIL). In HIL the designed controller is excecuted on the
embedded platform while the plant is modeled by a real-time
simulation environment. Despite the realism benefit of HIL,
its implementation is constrained by real-time requirements
on the execution of the plant model. Also, the modifications
in components and parameters in real-time simulator are
time-consuming. Similar to HIL, PIL is also a simulation
where the designed controller is executed on the embedded
platform. The difference here is that the PIL is not real-
time and the plant is simulated either on the host PC or
on the platform. Using PIL enables the designer to verify
the functionality of control code on the platform and mea-
sure the execution time and memory usage of the control

algorithm [4]. This data can be used in temporal analysis
of the control algorithm and time scheduling in the final
implementation.

PIL simulation is widely used in the various control
applications. In [5], a PIL simulation framework is presented
to test the designed spacecraft control. The control code
is generated manually and is not automated. it then exe-
cuted on VxWorks. Similarly, [6] presents a PIL framework
for unmanned air vehicle control where the controller is
manually implemented on Texas Instrument boards. Simi-
larly, [7] proposed a LabView based modeling environment
from where a FPGA footprint for the controller is gener-
ated. An overview of the testing and debugging in model-
based system engineering environments is provided in [8]. It
demonstrated automated code generation and execution on
a simple Raspberry Pi board through Simulink [9] standard
support. However, the setup is fairly simple and cannot be
used for FPGA-based embedded platforms. An interesting
PIL framework is presented in [3] and [4] where the con-
troller is implemented on a DSP board. It does not provide
multi-application support though. The work presented in [10]
suffers from similar drawbacks. In summary, state-of-the-
art PIL frameworks do not provide support for multi-core
and multi-application technologies and code generation is
mainly performed for low-capacity hardware modules like
Raspberry Pi and hand-written code is more commonly
used. Therefore, additional development is necessary for
supporting model-based simulations performed on FPGA-
based embedded platforms.

In this paper a PIL framework for model-based simulations
targeting multi-core platforms is presented. This new PIL
framework can:

o Automatically generates the target specific code from
Simulink model-based development environment.

« Uploads the code on the FPGA-based embedded plat-
form and executes PIL simulation and can monitor
platform outputs online.

o Communicate with a composable embedded platform
which guarantees interference free execution of the sim-
ulation in multi-application and multi-core scenarios.
It also allows the PIL user to decide on application
scheduling and resource utilization on the platform.

The paper is organized as follows. Section II defines the
targeted composable multi-core embedded platform. Sec-
tion IIT describes the example motion system and the control
application. Section IV describe possible PIL configurations
for control application. Section V describes the developed
PIL framework, automatic target-specific code generation
and different possible configurations for PIL simulation on
the platform. Finally, in Section VI the results of PIL
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Fig. 1. Predictable embedded platform under consideration

simulations for two of the state-of-the-art controllers applied
on the motion system is presented to validate and illustrate
the capabilities of the framework.

II. COMPOSABLE MULTI-CORE PLATFORM

The embedded platform targeted in this paper is Comp-
SOC [11]. The architecture of this platform is tile-based
which offers the configuration of a number of memory and
processor tiles, and their interconnection through Network-
on-Chip (NOC). Fig. 1 illustrates a possible architecture of
the platform with two MicroBlaze soft-core processor tiles.

The platform is capable of composable execution of multi-
application scenarios using partitioning on processor tiles,
memory resources and interconnections. This guarantees
an isolated and interference free implementation for each
application regardless of the presence of other applications.
This is clearly beneficial for controllers as well as a plant
model running on the platform. To do this, the platform
uses a predictable and composable micro-kernel (CoMik)
to create virtual processors (VPs) as processing resources.
Each VP utilize a portion of processing resource available
on the underlying physical processors and their interconnec-
tions (i.e. NoC communications). A periodic time-division-
multiplexing (TDM) policy is used on all processors and
interconnections. This enables the platform to achieve real-
time performance with cycle accurate time granularity.

To achieve this, the TDM is split into N partition slots
with 1); clock cycles lengths, separated by CoMik slots
with a fixed length of w clock cycles. The CoMik slots
are responsible of jitter-free context switching between VPs.
Each application in one or more slots on (possibly) multiple
processors interconnected by NOC connections. Applications
are swapped in and out transparently and perfectly periodi-
cally by CoMik. Fig. 1 shows an example TDM table with 3
partition slots on the first processor tile, running periodically
and sequentially.

III. CONTROL APPLICATION

This section defines an example control application to
be implemented on the embedded platform. We consider a
dual rotary fourth-order single-input-multiple-output motion
system [12]. Using dynamic equations, the mathematical
model for this system can be represented by a state-space
model. Defining 6; and 0, and their respective rotary speeds
of w1 and ws as the system states, the corresponding state-
space is adopted by the experiments of [13] as follows:

X(t) = AX(t) + BU(t),

(D
Y () = CX(t),
where, U(t) = iy, X(t) = [01, 02, w1, ws]" and,
0 0 1 0
0 0 0 1
A= _708x10* 7.08x10* —1.1x10° 1.1x10°
7.08x10* —7.08x10%* 1.1x10° —1.1x10°
0 )
B = 1.173x10%
1

c=[1 0 0 0.

The control task here is to design control input U[t] which
makes 6, to follow a desired reference r(t).

A. System Discretization

Since the target platform for implementing the controller is
a digital system, the first step in control design is to transform
state-space into discrete-time. by defining equally distanced
time instances tj the discrete equivalent of system states is
defined as:

zlk] == X(tx), k€ N>1. (3)

Similarly, y[k], u[k] and r[k] are defined. Now the control
task is to design u[k] which makes y[k] to follow r[k].

Defining sampling period h = t; —t;_1, the discrete-time
equivalent of system Eq. 1 is :

4)

where ¢ = e, and I = foh 5 Bds.

B. Control Design and Implementation

The controller we chose for this application is a 2-DOF
feedback-feedforward architecture. It is defined as:

ulk] = Kz[k] + Frlk] (5)

where K and F’ are feedback and feedforward controllers re-
spectively. the block diagram representing the above control
system is as shown in Fig. 2.

The feedback (K) is a state-feedback controller aiming to
stabilize the system. The design technique for K is linear-
quadratic regulator(LQR) (It can be replaced by any state-
of-the-art design techniques). The feedforward conrtoller is
a closed-loop model inversion which guarantees accurate
reference tracking. Referring to Fig. 2, we define closed-loop
transfer function (which represents dynamic relation of the
feedback+plant loop) as G¢ . Now if we design feedforward
controller equal (or approximately equal) to Gai it makes
the trasfer function from reference r[k| to the output y[k]
equal to 1. It means that the output perfectly follows the
reference.

The design and Model-in-the-loop (MIL) validation of the
designed controller can be performed using the presented
block diagram in Fig. 2 by a model-based simulation envi-
ronment in particular Simulink. At the MIL simulation, the
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correctness of the control algorithm is verified given certain
assumptions (e.g., periodicity and time of executions) on
the executions. After the MIL verification of control design,
the PIL simulation is performed where as a part of the
simulation is executed on the target platform (e.g., on the
platform described in Section II). We consider two relevant
PIL configurations which are described in the following.

IV. PIL CONFIGURATIONS

Fig. 3 presents a pseudo code of the PIL simulation for
the control structure shown in Fig. 2. The control application
is divided into two tasks — control task (C) and the plant
simulation (P). At each time instance tj, the control task
reads the current output x[k] and reference r[k] and and
computes the next control input u[k] by applying feedback
and feedforward controllers. The plant simulation reads the
current control input u[k] and applies it to the system state-
space Eq. 4 obtaining the resulted output y[k] and states x[k].
This process is then performed periodically until the end of
the simulation time.

Since the PIL simulation is a part of the model-based
simulation process, the signal generator and data logging are
performed in the same model-based development environ-
ment — Simulink. This means that Simulink is the responsible
of providing the time instance t; and reference value in
each step r[k] and plots y[k]. For the rest of the simulation
blocks, there are two possible PIL configurations which are
PIL-control task only (PIL-C) and PIL-control task and plant
simulation (PIL-CP).

A. PIL-Control Task Only (PIL-C)

In this configuration only the control task (C) is uploaded
and executed on the target platform and the plant simulation
(P) stays in Simulink environment as demonstrated in Fig. 4.
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Fig. 4. PIL-C configuration. The embedded platform is implemented on
a PYNQ-Z2 FPGA board. The host PC which runs Simulink communicate
with the board through TCP/IP or serial connection sending r[k] and xz[k],
and receiving the resulted u[k].

This PIL configuration is beneficial since it helps the designer
to study about execution times and constraints of implement-
ing a control task on the target platform. Since the target
platform is executing a multi-application TDM scheduling,
the PIL-C code is uploaded and executed only on its specific
virtual platform (VP) to avoid (mutual) interference with
other applications that may be running on the platform.
Referring to Fig. 4, during the simulation, Simulink provides
the ¢y, r[k], and z[k] and sends them to the virtual platform
allocated to PIL-C and halts the simulation until the response
of the platform is received. The platform then executes the
generated code of the control task composable from other
applications and sends back the new control input u[k] to
Simulink. Then Simulink resumes the simulation by giving
the new control input to the plant simulation and computing
the plant output y[k] and states z[k].

B. PIL-Control Task and Plant Simulation (PIL-CP)

In this configuration both control task (C) and plant simu-
lation (P) are uploaded and executed on the target platform as
demonstrated in Fig. 5. The benefit of this PIL configuration
is simulating the plant on the targeted platform which is one
step closer to the reality, since in the next design step (which
is HIL) the plant will no longer be in Simulink environment.
Similar to PIL-C, the PIL-CP code is uploaded and executed
only on its specific virtual platform (VP) to avoid (mutual)
interference with other applications that may be running on
the platform. Referring to Fig. 5, Simulink provides the t,
and r[k] and sends them to the virtual platform allocated
to PIL-C and halts the simulation until the response of
the platform is received. The platform then executes the
generated code composable from other applications and gives
back the new output value y[k] to Simulink. Then Simulink
continues the simulation by plotting the output and giving
new values to the platform.

V. PIL FRAMEWORK
In this section we describe the development process of the
PIL framework.
A. Code-generation

The targeted platform described in Section II is imple-
mented on PYNQ-Z2 FPGA board [14] (See Fig. 4). It
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Fig. 5. PIL-CP configuration. Both control task and plant simulation are
simulated on the platform. The host PC which runs Simulink communicate
with the board through TCP/IP or serial connection sending r[k], and
receiving the resulted y[k].

has a 650MHz dual-core Cortex-A9 processor with 512M B
available memory. The board enables communication with
the host PC using both serial and Ethernet connections.
To enable target-specific code generation, in the first step,
we defined the platform described in Section II as a new
target hardware in “hardware specification” in Simulink
specifications. Through this, we handed platform properties,
such as Microblaze as the processor, data types, endianness,
and largest atomic size to be considered in code-generation.

The code generation in this PIL framework is performed
automatically through Mathworks embedded coder tool-
box [15]. For this purpose a target-specific toolchain is
created which can be chosen in simulation preference as the
code generator. The process for generating code is trivial.
The designer first decides which part of the simulation is to
be executed on the platform. This part is then encapsulated
in a subsystem. By choosing the created toolchain,generating
code is to simply build the subsystem as a PIL block. The
result is divided in two parts. First is a library with the
corresponding generated codes for the subsystem. Second
is a PIL block which is responsible for code upload and I/O
exchange between Simulink and the platform through PIL
simulations.

B. PIL simulation

Now that the platform part of the simulation is divided
and the corresponding code is gereated, next is to run the
PIL simulation. Doing this is to normally simulate the
model including the PIL block. The steps of the simulation
is as follows.

Code Compilation: Starting the simulation is compiling
the code to an executable output to be uploaded on
the platform. Since the target platform has MicroBlaze
processors, the suitable compiler is MB-GCC. The created
toolchain provides the compiler library and address it in
Simulink. The compiled output is an executable ’.ELF’
file. The next step is to upload the executable on the platform.

Code Upload: ComspSOC platform is a composable
platform running multiple applications at the same time.
In the upload procedure it should be considered that the
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Virtual platform for PIL application: |3
Size of PIL Virtual platform in clock cycles: 10000

Check TDM
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Fig. 6. The created menu in the toolchain which enables the designer to
define TDM variables as well as communication channel for the simulation.

controller must be uploaded on its specific virtual platform
(VP). Fig. 6 represents the menu added to the simulation
preferences where the designer can define the number
of virtual platforms, TDM allocation and the size of
the virtual platform allocated to the control application.
The menu interactively plots the TDM wheel visualizing
resource utilization of each VP and the remaining available
processing units in TDM wheel to be allocated.

Considering these user-defined options, Simulink uploads
the executable on the corresponding virtual platform using
the TCP/IP connection.

Simulation: The final step is to run the simulation.
The simulation is performed by the same procedure
described in Section IV. The communication channel
between Simulink and the platform can be either a serial or
TCP/IP channel. The designer can choose one of them using
the same menu in Fig. 6. Both communication channels are
verified using Matlab defined benchmark tests resulting a
bandwidth of 4500 bytes per second (B/s) for the serial
and 18000(B/s) for the TCP/IP communications. While
TCP/IP provides higher bandwidth, the designer can opt for
serial communication to use a single connection for both
communication and power supply of the board.

VI. RESULTS

To validate the PIL framework, the designed controller
discussed in Section III is simulated Fig. 7 illustrates
the PIL-C simulation in the Simulink environment. The
sampling period in control design is 10ms. The reference
signal r(t) is a 2sin(wt). The plant is simulated using
Eq. 4 in a 100pus sampling period to mimic the motion
system behavior. The designed TDM scheduling for the
platform has 3 virtual platforms (VPs) with equal size of
10ms. For both PIL-C and PIL-CP configurations only VP2
is allocated to the PIL simulation and the two rest were
used for other applications. Fig. 8 and Fig. 9 are the result
comparison between PIL and MIL simulations for PIL-C
and PIL-CP respectively. For PIL-C the results of MIL and
PIL are identical. For PIL-CP however, referring to Fig. 9
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TABLE I
EXECUTION TIMES AND MEMORY USAGES FOR 4 SEC SIMULATION

PIL Configuration PIL-C PIL-CP
Avg. Execution Time in Each Step (ns) 600 140457
Total Execution Time (us) 48003 || 11566663
Size of *.ELF’ Executable (K Bytes) 19 22

there is a difference between MIL and PIL. The reason
could be the change in precision when the code generator
replaces plant parameters by their numeric equivalent.

Execution time and memory: The constructed framework
is able to report the memory usage and execution times.
TABLE. I represents the measured values through the
simulations. In this table, average execution time in each
step is the time spent on the platform to execute one step of
the simulation. Total execution time is the total time spent
on the platform to complete the simulation, considering
simulating for 4 seconds. The execution time and memory
usage for PIL-CP is higher than PIL-C since the platform
needs to simulate the plant which runs in a higher frequency
and requires more computation in each step.

VII. CONCLUSION

In this paper, we proposed a model-based PIL simulation
framework which targets composable multi-core platforms.
The framework supports model-based environments in par-
ticular Simulink. It also enables the designer to implement
and schedule the embedded platform on the FPGA within the

—— MIL Simulation output y[k]
Reference r[k]
= = PIL Simulation output y[k]

Time (sec)

Fig. 8. PIL simulation output for PIL-C configuration. The MIL and PIL
results are identical in this configuration
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Fig. 9. PIL simulation output for PIL-CP configuration. The left hand
scale is for simulation outputs and the right hand scale is for the difference
between MIL and PIL simulations.

same model-based environment. The composable embedded
platform enables multi-applications scenarios where PIL
simulation is executed next to other applications running on
the platform without any interference. The predictability of
the platform enables measuring execution time of the PIL
simulation. This is beneficial for model-based validation of
a wide range of control algorithms considering the hardware
constraints. The results validates the functionality of the PIL
framework. The work can be extended by adding ability to
make the simulations real-time and also to include the real
physical system to the loop enabling HIL simulations.
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