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Abstract: Data-driven feedforward control can significantly improve the positioning perfor-
mance of motion systems. The aim of this paper is to exploit the concept of batch-to-batch
learning control with basis function, applied in an online fashion. This enables learning within
a task while maintaining task flexibility. A recursive least squares optimization is proposed on
the basis of input/output data to compute the optimal feedforward parameters. The proposed
method is successfully validated in simulation, and applied to a benchmark motion system
leading to a major performance improvement compared to only feedback control.
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1. INTRODUCTION

Learning from data can substantially increase control per-
formance in motion systems, e.g., ranging from printing
systems (Bolder et al., 2017) and lithography (Blanken
et al., 2017) to semiconductor wire-bonding equipment
(Boeren et al., 2016). By learning a feedforward signal in
the iteration domain, i.e., based on previous motion tasks,
the repeating contributions of the error are compensated.
These batch-to-batch learning approaches are well devel-
oped leading to performance improvement for systems that
perform repeating motion tasks (Bristow et al., 2006; Gao
and Mishra, 2014). However, standard learning algorithms
such as iterative learning control (ILC) cannot cope with
varying references hampering industrial deployment.

Recently, learning control algorithms are extended with
basis function, enabling learning for system with non-
identical tasks (Hoelzle et al., 2011; van de Wijdeven
and Bosgra, 2010). In these approaches, the feedforward
controller is parameterized using basis function and, in-
stead of learning a signal, the feedforward parameters are
learned allowing extrapolation to varying references. The
aim is to compute a feedforward controller that reflects the
inverse system dynamics resulting in ideal tracking con-
trol (Boerlage et al., 2003; Widrow, 1987). An important
factor is the specific choice of a basis, representing the
plant inverse. In van der Meulen et al. (2008) polynomial
basis functions are exploited which leads to a linear op-
timization problem, however, this only captures systems
with unit numerator. In Blanken et al. (2017) rational
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basis functions are considered, capturing a wider range
of plants. However, this requires a non-linear optimization
problem. In Boeren et al. (2014) an alternative approach
is presented in which a novel combination of input-shaping
and feedforward control is used, allowing flexible batch-to-
batch learning with a rational basis, while maintaining a
linear optimization problem.

Although batch-to-batch learning allows for substantial
performance improvements after each task, learning within
a task, i.e., current iteration learning, lacks a fundamen-
tal basis. Promising results towards adaptive feedforward
control are presented in Butler (2012), however, in such
current iteration or adaptive approaches biased estimates
can be obtained due to closed-loop issues (van den Hof
and Schrama, 1994; Boeren et al., 2015). More specific, in
Mooren et al. (2019), a statistical analyses of current iter-
ation learning is presented showing that biased estimates
are obtained if noise is present.

The aim of this work is to present an on-line optimiza-
tion approach enabling fast learning combined with task
flexibility. To this extend, the approach in Mooren et al.
(2019) is further developed focusing on the implementation
aspects, the effects of noise leading to biased estimates are
reduced and an experimental motion control case study is
performed. The sub-contributions are as follows:

C1 the approach in Mooren et al. (2019) is extended for
online optimization of feedforward parameters from
measurement data,

C2 a simulation study is performed for validation,
C3 an experimental case study is performed to show the

potential of current iteration learning, and confirming
the theoretical conclusions in Mooren et al. (2019).

This paper is organized as follows. In Section 2, the
feedforward control problem is defined and a feedforward
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controller parameterization is proposed. In Section 3,
an optimization algorithm is derived to compute the
feedforward parameters based on input and output data.
In Section 4, a simulation study is performed to indicate
the benefit of this method. In Section 5, an experimental
case study is performed on a benchmark motion system.
Finally, conclusions and ongoing research are presented in
Section 6.

2. PROBLEM DEFINITION

In this section, the control setup is introduced and the
feedforward control problem is defined in more detail.
Furthermore, a rational feedforward parameterization is
proposed that allows to optimize feedforward parameters
as described in Section 3.

2.1 Control setup and feedforward control problem

Consider the control setup in Fig. 1, including both feed-
forward and feedback control. Here Cr ∈ R[q−1] has the
role of an input shaper, Cff(θ) ∈ R[q−1] is the feedforward
controller parameterized as function of θ ∈ Rnθ and Cfb

is a stabilizing and fixed feedback controller. Furthermore,
P0 ∈ R denotes the true system given by,

P0 =
B0(q−1, θb0)

A0(q−1, θa0)
(1)

in which B0(q−1) and A0(q−1) are the system numerator
and denominator polynomials as function of the true
system parameters θ0 =

[
θa0 θb0

]
. The notation R refers to

real rational functions and R[q−1] refers to real polynomial
functions in the delay operator q−1.

The aim is to compute the optimal parameters θ on the
basis of data {u} and {y} such that the positioning er-
ror is minimized. Therefore, an optimization algorithm is
present in Fig. 1, to computes the optimal feedforward
parameters. The optimization algorithm is further devel-
oped in section 3. Next, consider the following feedforward
control goal.

Definition 1. (Feedforward control goal). Compute a
causal feedforward controller Cff and input shaper Cr such
that the reference induced positioning error

e = S(Cr − P0Cff)r (2)

is minimal.

A well-known result in feedforward control is that the
feedforward controller must reflect the inverse of the sys-
tem dynamics to eliminate reference induced errors. This
becomes evident by substituting the feedforward controller
and input shaper as,

CrC
−1
ff (θ) = P0 (3)

in (2) leading to e(t) → 0 for all time, if the numerator
and denominator of P0 are described by Cr and Cff

respectively (Boeren et al., 2014). This result implies that
instead of optimizing the positioning error directly, one
can alternative create an estimate of P0 that satisfies (3) to
minimize the reference induced positioning errors (Boeren
et al., 2015, 2014; Ho and Enqvist, 2018).

Next, a feedforward controller parameterization is pro-
posed, that is capable of capturing the system dynamics.

P0Cfb
r y0e

−

+

+

u
Cr

uff
Cff(θ)

θ Optimization
algorithm

r̄

Fig. 1. Control setup with plant P0, feedback controller
Cfb, feedforward controller Cff and input shaper Cr.

2.2 Feedforward controller parameterization

To satisfy (3), the feedforward controller must be pa-
rameterized such that it can reflect the system P0. this
is denoted as P0 ∈ C, where C is the set of possible
feedforward controllers defined as follows.

Definition 2. Consider the feedforward controller param-
eterization,

C =

{
(Cr, Cff(θ))

∣∣∣Cff(θ) = A(q−1, θ)
Cr = B0(q−1)

, θ ∈ Rna
}

(4)

here,

A(q−1, θa) =

na∑
i=1

ψi(q
−1)θi (5)

with parameters

θ = [θ1 θ2 . . . θna ]
> ∈ Rna , (6)

and basis functions

Ψ = [ψ1 ψ2 . . . ψna ]
> ∈ R[q−1], (7)

such that Cff(q−1, θ) = Ψ>(q−1)θ.

Furthermore, the input shaper must satisfy that

Cr(q
−1)

∣∣∣∣
q−1=1

= 1 (8)

which implies that Cr has unit d.c. gain to avoid scaling of
the reference, see Boeren et al. (2014) for further details.

Remark 3. Note that the input shaper Cr is fixed to (a
scaled version) of B0, which is assumed to be known for
the sake of simplicity. Hence, in the remainder of this work
θ0 refers to θa0 . The approach presented next can naturally
be extended to the general case where Cr is also optimized.

To conclude, the feedforward control problem is defined
and a parameterization is proposed. The following section
focuses on the optimization of Cff(θ).

3. FEEDFORWARD PARAMETER OPTIMIZATION

The previous section shows that the ideal feedforward
controller is given by (3), from which it follows that the
error is minimized if the system P0 is exactly represented
by C(θ). The aim of this section is to propose a procedure
to compute the feedforward parameters.

3.1 Defining the optimization problem

The optimization problem is stated to compute θ on the
bases of input data u and measurement data ym in a
closed-loop setting.



Consider the framework in Fig. 2, the aim is to minimize
the quadratic cost function,

θopt = min
θ

1

2

k∑
i=0

ε2(i). (9)

with objective function ε(k),

ε(k, θ) = ū(k)− ȳm(k, θ) (10)

in which ū(k) and ȳm(k, θ) are,

ū(k) = B(q−1)u(k) (11)

ȳm(k, θ) = A(q−1, θ)ym(k) (12)

where

A(z, θ) = Cff(z, θ)F (z) (13a)

B(z) = Cr(z)F (z) (13b)

are filtered versions of the plant numerator in Cr and
the basis functions in Cff . Note that this is in principle
similar to an equation error method in, e.g., Ljung (1999).
Additionally, a stable and causal filter F (z) ∈ R is present,
which is ideally close to 1, and used to improve robustness
against noise as motivated in the remainder of this section.

The measured signal ym may contain noise v and quan-
tized data. This signal is filtered with the basis functions
contained in Cff , which are assumed to be of the form,

ψ(z) =

(
z − 1

Tsz

)n
(14)

being discrete-time equivalents of the continuous-time
derivative operator sn, and a natural choice to parame-
terize the feedforward controller, see, e.g., Blanken et al.
(2017); Boeren et al. (2015). This implies computation
of the nth-order derivative of the potentially noisy signal
ym, leading to a bad signal to noise ratio. Therefore, by
choosing the filter F (z) as an nth-order low-pass filter,

F (z) =

(
1− e−2πfcTs

z − e−2πfcTs

)n
(15)

with n the largest order of Cff(θ) and fc the cut-off
frequency, noise effect are mitigated as shown next. Fur-
thermore, this specific choice of F (z) is motivated by the
fact that performance is mainly focusing on the frequency
range below the bandwidth, whereas noise and quantiza-
tion effects become more dominant in the higher frequency
range.

Remark 4. Note that if F would only be present in A and
not in B, the parameterization would no longer span the
required solution space. Since the poles of F (z) appear in
A and cannot be placed elsewhere by θ.

Next, it is shown that if noise is not present and P0 ∈ C,
minimization of (9) leads to minimization of (2), i.e.,
θopt → θ0. To show this rewrite the objective function as

ε(k, θ) = B(q)u(k)−A(q, θ)ym(k) (16)

substitution of ym(k) = P0u(k) + v(k), with (13) and (1)
leads to

ε(k, θ) = F

(
B0 −Ψ>θ

B0

A0(θ0)

)
u(k)− FΨ>θv(k) (17)

where the arguments q−1 and k are omitted for the ease
of notation. This shows that if v = 0, the latter term
vanishes, and if θ 7→ θ0 the objective function becomes zero
and subsequently the cost function (9) is minimized by
satisfying (3). If v 6= 0 the filter F (z) acts as an additional

B0(q
−1)

A0(q−1,θa0)
Cfb(q

−1) ym
e

−

u

ε(k)

r̄

−

v

ȳm

B(z−1) A(z−1, θ)

ū

y0

Parameter Optimizationθ
min
θ

1

2

k∑
i=1

ε2(i)

Fig. 2. Parameter optimization setting.

low-pass filter on the noise term, i.e., for high-frequencies
noise is suppressed.

To conclude, this analyses implies that biased estimates
are obtained if noise is present, and a detailed statistical
analyses in Mooren et al. (2019) confirms this for F = 1.
In this work it is shown that the effect of noise leading to
bias can be mitigated by implementing an additional filter
F (z) which acts as a low-pass filter.

3.2 Optimization algorithm

In this section, the proposed optimization problem is writ-
ten into a least-squares problem with an analytic solution.
To compute the solution to this problem efficiently for
current iteration learning, a procedure is provided based
on recursive least squares (RLS).

First define the following

E =


ε(1)
ε(2)

...
ε(k)

Φ =


φ(1)
φ(2)

...
φ(k)

 Ū =


ū(1)
ū(2)

...
ū(k)

 (18)

where φ(k) = F (q−1)Ψ>(q−1)ym(k) such that the op-
timization problem is alternatively written as the least
squares problem

Ū = Φθ (19)

with solution

θ = (Φ>Φ)−1Φ>Ū . (20)

The feedforward optimization problem can be solved
batch-wise by collecting a set of data and solving (20).

For online optimization the solution (20) is not efficiently
computed, since it takes all data up to the current iteration
into account. Therefore, the problem is solved in a recur-
sive fashion. The solution to (19) at time k is alternatively
written as function of current inputs and the previous
estimate θ(k − 1),

θ(k) = θ(k − 1) +K(k)
(
ū(k)− φ>θ(k − 1)

)
(21)

in which the time dependent learning gainK(k) is given by

K(k) = P (k)φ(k) (22)

and the matrix P (k) is recursively computed as follows

P (k) = P (k − 1)
[
I − φ(k)Σφ(k)>P (t− 1)

]
(23)

where

Σ =
(
I + φ(k)>P (k − 1)φ(k)

)−1
(24)

with initial conditions P (t0) =
(
Φ(t0)>Φ(t0)

)−1
and θ(t0).

A detailed derivation of the RLS algorithm can be found
in (Åström and Wittenmark, 2013, Chapter 2), Goodwin
and Sin (2014).



The following procedure is proposed for online optimiza-
tion of the parameter using the RLS in (21) - (24).

Procedure 5. (Online parameter optimization).

(1) Define an initial parameter estimate θ(t0) and initial
condition P (t0).

(2) Compute the learning gain K(k) with (22) - (24).
(3) Compute the parameters θ(k) using (21).
(4) Update the controller Cff(θ(k)) using θ(k) and start

at step 2 for the next iteration with k = k + 1.

This completes the optimization algorithm and analyses.
In the remainder of this work, the proposed method is
further elaborated by means of a simulation example and
an experimental case study.

4. SIMULATION STUDY

In this section, a simulation study is performed to validate
the proposed method in an ideal situation, i.e., without
measurement noise and if P0 ∈ C. Furthermore, it is shown
that the conventional parameterization with F = 1 fails if
quantization and noise effects are present, whereas, with
the proposed low-pass filter the estimate is improved. Fi-
nally, it is shown that procedure 5 is capable of optimizing
the feedforward parameters in an on-line fashion.

4.1 Simulation model and control goal

Consider a fourth-order system P0 as depicted in Fig. 3,
with 3 samples delay and the denominator is parameter-
ized as (5) where,

θ0 =
[
3.7 · 10−4, −1.7 · 10−7, 0.3 · 10−8

]>
(25)

and basis functions

ψ1(z) =

(
z − 1

Tsz

)2

, ψ2(z) =

(
z − 1

Tsz

)3

, ψ3(z) =

(
z − 1

Tsz

)4

resulting in

P0(z) =
4.7496 · 10−6(z + 1)2

z3(z − 1)2(z2 − 1.969z + 0.998)
. (26)

This system closely represents the experimental setup that
is used in Section 5. Furthermore, a PD-type feedback
controller with low-pass filter,

Cfb(z) =
0.83(z + 1)(z − 0.9898)

(z − 0.8575)(z − 0.8314)
(27)

is designed resulting in an open-loop bandwidth of 15 Hz.

Throughout the simulation, the reference is taken as a
typical point-to-point motion task. To simulate the effect
of an encoder the measured output ym is quantized with a
resolution of 2π/2000 radians which is common in practical
applications. Next, the input shaper Cr is parameterized
as in definition 2,

Cr(z) =
1

4

z2 + 2z + 1

z3
(28)

which is a scaled version of the plant numerator such
that it satisfies (8) with the 3-samples of delay included.
The feedforward controller Cff is parameterized as in (4)
with basis function ψ1, ψ2 and ψ3. These basis functions
correspond to the second, third and fourth order derivative
operators. In terms of feedforward control these can be
considered as acceleration, jerk and snap feedforward
which are automatically tuned.

J1 J2
u

x1 x2

k

d

k

Fig. 3. Two mass-spring-damper system.

4.2 Simulation results

The feedforward parameters are estimated using the pro-
posed approach, i.e., with the RLS algorithm. Multiple
simulations with and without quantization noise are per-
formed, to show the effect of the additional filtering with
F (z). Finally, the estimation errors are compared.

The following three simulation are performed;

(1) without quantization noise and F = 1, which is
considered as the ideal case,

(2) with quantization noise and F = 1,
(3) with quantization noise and fc = 10 Hz in (15).

The estimation error for the first parameter is depicted
on a logarithmic scale in Fig. 4. The first simulation
without noise ( ) shows that the estimate converges
closely to the true parameter up to numerical accuracy.
The second simulation with noise ( ) clearly shows a
major estimation error and slow convergence. This is
improved by using the proposed filtering ( ), resulting
in fast convergence and a small error of 2 · 10−8.

The obtained plant estimate given by (3) is depicted in
Fig. 5 for the latter two simulations. This clearly shows
that a poor estimate of the true plant P0 ( ) is obtained
if quantization noise is present and F = 1 ( ). The
proposed approach creates a good estimate of the true
plant despite the presence of quantization effects ( ).

To conclude, these results confirm that the effect of quan-
tization noise is severely reduced by using the filter F (z),
leading to accurate and fast estimation of the system
dynamics.

0 1 2 3 4 5 6 7 8

Time [s]

10−15

10−10

10−5

100

105

|θ
0
−
θ(
k
)| 2

10

Fig. 4. 2-norm of the difference between the true system
parameter θ0 and (i) estimate ideal simulation ( ),
(ii) estimate with quantization and F = 1 ( ) and
(iii) estimate obtained with proposed approach with
quantization and fc = 10 Hz ( ).
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5. EXPERIMENTAL VALIDATION

In this section, the proposed feedforward optimization
method is applied to a benchmark motion system. In
the previous section, the proposed method is validated in
a controlled situation, however, during the experiments
many undesired effects are present including; sensor quan-
tization, measurement noise, delays and model mismatches
P0 6∈ C. The aim of this experimental case study is to show
the potential of this method in a practical situation.

5.1 Experimental setup

The experimental setup is depicted in Fig. 6, it consists of
two rotating inertias J1 and J2 connected with a flexible
shaft. The combined inertia is approximately given by
3.68·10−4 kg m2. The rotation of both inertias is measured
using incremental encoders with a resolution of 2π/2000
radians. The control goal is to minimize the reference
induced positioning error (2) of the non-collocated inertia
J2. Furthermore, the same feedback controller (27) as in
the simulations is used for the experiments, again resulting
in an open-loop bandwidth of approximately 15 Hz.

5.2 Feedforward controller optimization

A simplified representation of the setup is given in Fig. 3,
where the mapping from u to the position of second inertia
J2 is given by the following transfer function.

Flexible shaft

Non-collocated inertia Collocated inertia

Motor + Encoder 1
Encoder 2

Fig. 6. Experimental setup.

Pncol(s) =
1

s2

ds+ k

J1J2s2 + (J1 + J2)ds+ (J1 + J2)k
(29)

By assuming that damping is small this becomes

Pncol(s) ≈
1

J1J2
k s4 + (J1 + J2)s2

. (30)

Hence, to minimize the positioning errors, the feedforward
controller Cff should approximate the plant denominator
as shown in (3). Therefore, the following two basis func-
tions are considered dominant and used in Cff ,

ψ1(q−1) =

(
1− q−1

Ts

)2

, ψ2(q−1) =

(
1− q−1

Ts

)4

(31)

which can be seen as an acceleration and snap feedforward
term. Furthermore, the input shaper is equal to the simula-
tion case study, and the cut-off frequency for the low-pass
filter F (z) is set to fc = 25 Hz, which is slightly above
the bandwidth of 15 Hz. Next, procedure 5 is executed

with initial parameter estimates θ(t0) = [0 0]
>

and initial
matrix P (t0) = 10−5 ·I2×2. The reference is a fourth-order
point-to-point motion as depicted in Fig. 8.

5.3 Experimental results

The experimental results are shown in frequency-domain
with a focus on the estimation, and in time-domain to
show the performance improvement.

Frequency-domain results: Two experiments are per-
formed, during the first experiment F = 1 ( ), during the
second experiment fc = 25 ( ) as proposed earlier. The
obtained estimates are compared to the frequency response
function (FRF) of the setup, see Fig. 7. This shows that
without the use of a low-pass filter a poor estimate is
obtained, whereas with the low-pass filter a good estimate
of the setup is achieved. It is interesting to note that,
although the low-pass filter has a cut-off frequency of
fc = 25 Hz the resonance frequency of the plant around
58 Hz is still estimated closely. This is explained using the
parametric model in (29) of which the resonance frequency
is given by
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Fig. 7. FRF of the experimental setup ( ), and experi-
mental result with F = 1 ( ) and with fc = 25 Hz
( ).



ωres =

√
(J1 + J2)k

J1J2
(32)

being a combination of the inertia and stiffness. Hence, by
estimating the compliant contributions of the acceleration
and snap terms as in (30), the resonance frequency is
estimated closely. Furthermore, it is observed that the
damping is not properly estimated because it is assumed
to be zero and thus not adapted.

Time-domain results: To show the benefit of online learn-
ing in the time-domain, also two experiments are per-
formed. During the first experiment only feedback control
is used ( ) and in the second experiment the proposed
feedforward controller optimization is included ( ), see
Fig. 8. The results show a significant performance improve-
ment. Within a fraction of the first task, about 0.1 seconds,
the algorithm has computed the feedforward parameters
and the error is reduced with a factor 10, indicating the
benefit of direct learning.

To conclude, a good and fast estimate of the feedforward
parameters is obtained through current-iteration learning
in a practical situation, furthermore the overall perfor-
mance is improved with a factor 10.

6. CONCLUSIONS & ONGOING RESEARCH

A framework for current-iteration feedforward learning
with basis functions is proposed, enabling fast learning
while being flexible to task variations. Feedforward pa-
rameters are optimized using recursive least squares, and
additional filtering is proposed to mitigate the effect of
noise and sensor quantization. The method is success-
fully validated in simulation and an experimental motion
control case study is performed. The results show the
immediate benefit of learning within a task resulting in a
major performance improvement. Furthermore, the results
in this paper confirm the theoretical conclusions in Mooren
et al. (2019). Ongoing research focuses on fundamental
bias elimination along the lines in Blanken et al. (2017).
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and the scaled reference ( ).

REFERENCES
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