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Abstract—The paper deals with a class of plug-in type repeti-
tive controllers intended for servo systems which follow periodic
reference signals or compensate periodic exogenous disturbances.
Proportional-integral (PI) feedback controller is complemented
by an internal model of a generic periodic signal aiming at
perfect asymptotic tracking or disturbance rejection. A novel
design method is proposed allowing a simultaneous tuning of the
PI controller and the repetitive control part. The design require-
ments can be formulated in the frequency domain as proper loop-
shaping inequalities defining constraints on important closed-loop
sensitivity functions. These constraints are translated directly
into the parametric plane of the controller allowing to derive
a complete set of admissible controllers. The proposed method
is demonstrated in a case study of a flexible motion system.

Index Terms—repetitive control, periodic disturbance rejec-
tion, PI control, loopshaping, H-infinity regions, motion control

I. INTRODUCTION

Repetitive control methods aim at designing feedback loops
capable of compensating generic periodic disturbances or
tracking periodic reference signals with high accuracy. The
fundamental idea comes from the Internal model principle [5]
which states that the model of the exogenous signal generator
has to be inserted into the loop in order to achieve zero
tracking error asymptotically. It can be shown that a pure
time-delay with positive feedback can serve as a minimal
model for an arbitrary periodic function. Reference [1] is
considered to be a first documented practical application of
repetitive control. General analysis of closed-loop stability and
performance of repetitive controllers followed later in [2]–[4].
Numerous design method emerged in the last three decades
for linear, nonlinear, continuous or sampled-data systems [6]–
[10]. Several successful applications were reported in various
domains ranging from optical storage systems and disk drives
[11], motion controls and robotics [12] to hydraulic manip-
ulators [13] or power electronics [14]. A survey [16] maps
the most important results and provides connections to the
closely related topics of iterative learning control and run-to-
run control.

Most of the relevant literature dealing with general design
methods for the repetitive controllers focus on the deriva-
tion and parametrization of the part containing the internal
model of the exogenous periodic signals plus some other
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Fig. 1. Considered structure of the repetitive controller, R - repetitive control
part in a plug-in scheme, C - feedback compensator, P - controlled plant

dynamic elements necessary for the achievement of stability
and performance. The feedback compensator dealing with
the stabilization of the closed loop is often assumed to be
known in advance. This may lead to suboptimal performance
since the insertion of the repetitive control part often leads to
significant deterioration of the achievable quality of control.
Therefore, it may be advantageous to design the repetitive
and feedback control parts in a coordinated manner consid-
ering their simultaneous contribution to the overall closed-
loop dynamics. From the implementation point of view, a
plug-in type scheme may be advantageous [7] as it allows
simple (de)activation of the repetitive control part only in
specific regimes of operation. Methods capable of designing
robust feedback controllers which satisfies some performance
constraints in both normal and repetitive control regimes can
be beneficial for such scenarios.

The paper proposes a novel design method based on the
recent results presented in [15] which dealt with a compu-
tational procedure for translation of the frequency domain
design requirements directly to the parametric plane of the PI
controller. The current work utilizes these results and offers a
systematic approach to the synthesis of a class of plug-in type
repetitive controllers in a special case where a PI algorithm
is assumed to be used as the feedback compensator. A whole
set of admissible controllers fulfilling all the important design
requirements can be constructed. An example of application
to a mechatronic system is given in a use-case study.

The paper is structured as follows. Section II introduces the
considered structure of the plug-in type repetitive controller.
Section III deals with the proposed design method. Practical
example of application to a motion control system is presented
in Section IV followed by final concluding remarks.



II. STRUCTURE OF THE REPETITIVE CONTROLLER

Among several versions of the repetitive control (RC)
algorithm, a plug-in type scheme with a parallel connection
of the periodic disturbance generator was chosen in our ap-
plication. This scheme is suitable for practical implementation
as it extends a conventional feedback loop with the repetitive
control block which can be conveniently enabled or disabled
when needed without disturbing the stability of the loop, when
properly designed.

The repetitive controller in the parallel form introduces
a transfer function into the loop in the form of

1 +R(s) =
1

1− e−sTQ(s)
, (1)

where R is the repetitive control block from Fig. (1) and Q is
a suitable shaping filter which is to be derived later. For the
particular choice Q(s) = 1, the repetitive part generates an
infinite number of poles pk on the imaginary axis at positions
given as follows

pk = jkωn; k = ±1,±2, ...,∞; ωn =
2π

T
. (2)

Following from the internal model principle [5], an arbitrary
T-periodic exogenous signals r, d can be compensated asymp-
totically provided that the closed-loop is internally stable.

A sufficient condition of stability for an arbitrary period T
can be derived from the Small-gain theorem by isolating the
transport delay term and the rest of the dynamics as

||Q(s)S(s)||∞ < 1; S(s) =
1

1 + CP
, (3)

where S denotes the closed-loop sensitivity function. It is
clear that the stability cannot be guaranteed without the Q
filter for most practical systems due to the well-known Bode’s
sensitivity integral theorem. Therefore, the Q is commonly
designed as a low-pass filter with the cut-off frequency cho-
sen in such a way that the stability condition (3) holds.
This reduces the bandwidth in which the repetitive controller
compensates the periodic disturbance. Asymptotically perfect
tracking cannot be achieved anymore. However, a significant
portion of the error can be reduced at the dominant frequencies
within the pass-band of the Q filter. In the algebraic domain,
the introduction of the Q filter leads to the retarded spectrum
of the internal model leading to an increased stability margin.

III. H-INFINITY LOOPSHAPING DESIGN

There are principally three approaches to the design of the
repetitive controller:

1) The feedback controller C which stabilizes the loop is
designed at first for the nominal plant P without consid-
ering the repetitive control part R using any appropriate
method. The Q filter structure and parameters as well
as the disturbance period T are chosen afterwards in
the second step. Usually an iterative procedure of fil-
ter retuning while checking the stability condition and
any relevant performance criteria for the whole control

Fig. 2. H∞ loop-shaping design - formulating the design requirements in
the frequency domain by shaping the important closed-loop transfer functions

scheme including the R block is required. This is the
most common approach suggested in the literature.

2) The Q filter and period T are chosen and fixed at first
followed by the derivation of the feedback compensator
C for the modified system P = P (1 + R). This part
becomes difficult since the repetitive disturbance model
introduces an infinite-dimensional time-delay dynamics
which complicates the feedback controller design when
using standard methods.

3) The repetitive controller R and feedback compensator
C are designed in a coordinated manner. The repeti-
tive control bandwidth given by the Q filter as well
as the period T are considered to be a part of the
design requirements. Multiple design constraints can be
formulated both for the nominal plant P (with the RC
function deactivated) and the modified plant P which
acts in the loop after the connection of the RC part. The
goal is to derive a suitable controller which satisfies all
the requirements simultaneously.

The last two approaches are attractive from the engineering
point of view as they allow to consider the influence of
the repetitive control part yet in the phase of the feedback
controller design. Moreover, it might be convenient to get an
information about the (non)existence of the solution and derive
all the admissible controllers when the solution exists.

To accomplish that, a systematic approach is proposed for
the derivation of the controller parameters in the special case
where C is assumed to be a conventional PI controller. The
method can be adapted to the case of PID compensator as
well as to other low-order fixed structure controllers with
two or three parameters. The PI controller case is chosen as
a representative example as it is the most common algorithm
used in industrial applications.

PI controller design using H∞ regions method

The controlled process P (s) is assumed to be a generic
LTI system without the poles on the imaginary axis (can be
relaxed by adjusting the controller derivation procedure). The
feedback compensator C(s) is considered in the standard PI
controller form

C(s, k) = kp +
ki
s
, (4)

where k denotes the parameters vector [kp, ki].



Fig. 3. H∞ region and the corresponding admissible subset of the parametric
ki − kp plane of the PI controller

Arbitrary number of design constraints can be formulated
in the frequency domain in the form of

||H(s, k)||∞ < γ, (5)

where H corresponds to an arbitrary closed-loop transfer
function which may be formed by injecting a generalized input
at any point of the loop, choosing an arbitrary generalized
output and include a frequency-dependent weighting in the
form of

H(s, k)
∆
=W (s)S∗(s), (6)

where S∗(s) denotes one of the closed-loop sensitivity
functions (sensitivity, complementary-, input- and controller-
sensitivity, see Fig. 2) and W (s) introduces arbitrary user-
defined frequency-dependent scaling.

Alternatively, a mixed sensitivity constraint can be given in
the form which is often used in the robust control theory

||H1||2∞+ ||H2||2∞
∆
= ||W1(s)S1∗(s)||2∞+ ||W2(s)S2∗(s)||2∞ < γ2.

(7)
The goal is to find a controller C(s, k) which together with
the given H(s) fulfil the following three conditions

1) C(s, k) internally stabilizes the closed-loop
2) H(s, k) used in the design criterion is stable
3) The H-infinity condition ||H(s, k)||∞ < γ or
||W1(s)S1∗(s)||2∞ + ||W2(s)S2∗(s)||2∞ < γ2 holds

Such controller is called the H∞ controller. Typically, there
is a whole set of the admissible controllers fulfilling the above-
mentioned conditions which can be represented directly in the
parametric plane [ki, kp] (Fig. 3).

This boundary defines a set of admissible controllers. In
case the set is nonempty, which means that there exists at least
one controller of the given structure for the defined design
constraint, one particular parameter combination has to be
chosen. One of the possible choices is to select the controller
with the highest integral gain which is known to minimize the
Integral error criterion

IE =

∫ +∞

0

e(t)dt =
1

ki
. (8)

The computation of the H∞ region and its corresponding
set of admissible controllers is a nontrivial task. However, as
presented in [15], an explicit solution can be derived in the
form of

ki(ω) = Fi(ω, xl, γ),

kp(ω) = Fp(ω, xl, γ, A,B,A1, B1, w, w1),

ω ∈ [0,∞), (9)

with the arguments of parametric curves Fi, Fp defined as

A
∆
= Re (P (jω)) , A1

∆
=

dA

dω
,

B
∆
= Im (P (jω)) , B1

∆
=

dB

dω
,

w
∆
= |W (jω)|2, w1

∆
=

dw

dω
, (10)

and xl; l = {1, 2, 3, 4} are the real roots of the ”companion”
polynomial

ax4 + bx3 + cx2 + dx+ e = 0 (11)

with the real coefficients a, b, c, d, e depending explicitly on
{ω, xl, γ, A,B,A1, B1, w, w1} (see the reference [15] for the
full derivation). The important result is that the derivation of
the H∞ region always leads to 4th order polynomial regardless
of the order of the plant or the user-defined weighting func-
tions. Therefore, analytic expression for its roots is available
from the Ferrari’s method and Cardano formulas. Their careful
examination allows a separation of the real roots which lead
to the solution of the H∞ region boundary.

Multiple design constraints may be formulated in the fre-
quency domain for several weighted H∞ norm of various
closed-loop sensitivity functions. The resulting admissible
region is then computed from the intersection of the individual
regions corresponding to each design constraint.

Employing H∞ regions in RC design problem

The procedure for the derivation of the H∞ PI controllers
can be used conveniently for the repetitive control problems
due to the very general form of the feasible design constraints
(6,7). A suitable methodology is proposed in the following
steps:

1) Formulate nominal performance requirements for the
plant P without the RC part by setting proper loop-
shaping inequalities (6) for the important closed-loop
transfer functions or using the mixed-sensitivity criterion
(7) and compute the corresponding H∞ regions. These
requirements define the closed-loop behavior with the
deactivated RC function in the plug-in scheme (Fig. 1).
This may be relevant for transient regimes where the
compensation of periodic disturbances is not needed and
the R block may be disconnected in order to improve
stability and performance of the loop.

2) Choose the structure and parameters of the Q filter
and the disturbance period T , e.g. from the a priori
knowledge about the dominant frequency content of the
exogenous signals.



3) Formulate the robust stability condition ||QS||∞ < 1
which fulfills the general form for the design constraints
(6). This enforces closed-loop stability for an arbitrary
disturbance period T . It can be optionally substituted by
requirement Nr. 4 when the period is known in advance.

4) Formulate RC performance and stability require-
ments for the modified plant P = P (1 + R) and a
particular chosen disturbance period T . This defines the
closed-loop performance including the activated R block
providing the repetitive disturbance compensation. As
the computational procedure works for arbitrary order of
the plant including time-delays, the corresponding H∞
regions can be computed in the same manner. Multiple
period lengths can be considered e.g. in cases with
various operating regimes. Internal stability is attained
automatically from the principle of the design method.

5) Compute the intersection of all the obtained H∞ re-
gions. In case there exists a non-empty set of admissible
controllers, select one particular controller using some
secondary design criterion (e.g. the largest integral gain
which is optimal with respect to (8)).

The proposed methodology corresponds to the approach
Nr. 2) from the discussion at the beginning of Sec. III
when considering a single particular period T and Q filter.
However, the presented approach may be used in a much
more general way by exploiting the fact that all the design
requirements can be transformed directly to the admissible
regions in the parametric plane of the PI controller and the
intersection can be computed automatically giving a set of
parameters which fulfill all the requirements simultaneously.
The shape of the resulting regions gives both qualitative and
quantitative information about what can be achieved for the
given design problem, whether there is a solution and which
design requirements are potentially in conflict.

Few suggestions on how to use this in practical design
scenarios follow:

• Multiple different disturbance periods and Q filters
can be assumed, e.g. for the systems operating in various
regimes requiring proper adaptation of the RC part of the
controller. Also the plant model may change in various
operating points. The proposed H∞ regions allows to
derive one robust feedback controller which will work
for all the considered situations, if it exists, and all the
solutions are obtained at once. If there is no global
solution, the computed regions give a suggestion on how
to change its parameters accordingly and derive e.g. a
gain-scheduled controller.

• The disturbance period T and the structure of Q filter
can be fixed, but the bandwidth of Q may be used as
another design parameter. By computing the regions
for various repetitive bandwidth, one may simply derive
its maximum feasible value which does not violate the
other design constraints.

• The previous case can be automated by forming a
supervisory optimization loop which varies the repetitive
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Fig. 4. Flexible arm manipulator - mechanical motion system used for the use
case study, top - testbed schematics, bottom - identified frequency response
function

bandwidth Q and searches for its maximum value leading
to a non-empty set of admissible PI gains.

The above mentioned scenarios allow a coordinated design
of both the RC part and feedback compensator. Therefore, they
belong to the case Nr. 3) mentioned in Sec. III. The compu-
tation of the regions is nontrivial, but it can be handled using
proper software tools. A Matlab toolbox which automates the
derivation of the H∞ regions and their intersections is being
developed at our workplace. It will be available to a general
public once it is finished.

IV. EXPERIMENTAL RESULTS

The proposed method for the H∞ design of PI repetitive
controller is demonstrated on the example of a single DoF
motion system consisting of a drive and flexible arm (Fig. 4).
A model of the system was obtained by means of experimental
identification. The resulting frequency response function is
shown as well. Two dominant resonance modes due to lateral
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dynamics of the arm and flexible motor-arm coupling are
present. Parametric transfer function model was derived as

P (s) =
ω(s)

Tm(s)
=
num(s)

den(s)
, (12)

where Tm denotes the motor torque applied at the input and
ω is the angular velocity of the arm. The numerator and
denominator coefficients1 are given as

cn = {8.89e7, 1.02e10, 2.31e13, 1.53e14, 1.54e17},
cd = {1, 4880, 9.54e6, 2.85e10, 1.67e12, 3.45e14, 9.638e15}.

(13)

The design requirements were specified as follows:
• Internal stability of the closed loop is required for both

nominal and RC mode of operation (R block active or
disabled)

• General robustness condition for the nominal plant model
P (with the inactive RC part) imposing maximum sensi-
tivity limit
Ms = ||S||∞ < 2

• Stability and performance requirement for the RC regime
(R block active)
Msr = ||Src||∞ < 2, Src

∆
= 1

1+PC
, P = P (1 +R)

• Specification of the disturbance period
ω = 10rad/s, T = 2π

10 = 0.628s
• Specification of the RC bandwidth
Q(s) =

w2
q

s2+1.4wqs+w2
q
, wq = 100rad/s

• Highest achievable bandwidth in terms of the IE criterion
(8), i.e. min{IE}

∀{kp,ki}
= max(ki) with respect to the

previous design constraints.
Other well known control performance criteria such as ISE

or ITAE could be used as well in the last design specification.
However, their optimal value has to be found numerically by

1The transfer function models are internally stored and handled in the form
of a zero-pole-gain model or by means of special orthogonal parameterizations
in our application to avoid ill numerical conditioning which may appear for
high plant order, no specific treatment was necessary in this particular case

formulating a constrained optimization problem in terms of
the computed feasibility region. Experience shows that well
chosen frequency domain requirements in conjunction with
the IE criterion used in the example work well in most cases.
Additional weighted complementary sensitivity or controller
sensitivity constraints ||W1T ||∞ < 1, ||W2CS||∞ < 1 might
be used in case that the control action needs to be penalized
as well.

The H∞ regions computed for the formulated design con-
straints are shown in Fig. (5) for the parametric ki − kp
plane. The design requirement Nr. 3 (Msr < 2) is more
restrictive and contains a subset of controllers fulfilling only
the nominal performance and stability specification given by
constraint Nr. 2 (Ms < 2). It can be seen that there is still
an infinite number of solutions inside of the yellow area
designating the intersection of both regions. All the kp, ki
parameters combinations inside of this boundary meet all the
design requirements simultaneously. A particular solution with
the highest integral gain (red point in Fig. 5 corresponding to
kp = 0.32, ki = 405.9) denotes the optimal values with respect
to the IE criterion (8). This parameter set was chosen as the
final compensator gains.

Figure 6 shows the achieved amplitude response of the
closed-loop sensitivity functions S, Src both for the nominal
plant and the extended scheme with the RC part included. The
effect of the inserted internal model of the periodic signal
is clearly observed from the notch regions in the amplitude
response which are generated by the open-loop poles up to the
bandwidth of 100rad/s imposed by the chosen Q filter. The
formulated loop-shaping inequalities ||S||∞ < Ms, ||Src||∞ <
Msr are met exactly since the optimal controller lies at the
boundary of the corresponding H∞ regions (Fig. 5).

Closed-loop performance was evaluated by means of a nu-
merical simulation. A position-dependent disturbance with
three dominant harmonics simulating an unbalanced load or
cogging torque of the motor was injected at the plant input in
the form of

d(t) =

3∑
i=1

sin(iϕ(t)); ϕ(t) =

∫ t

0

ω(τ)dτ . (14)

The system was commanded to follow a constant velocity
setpoint of ω∗(t) = 10rad/s. Comparison of the closed-loop
performance by means of the steady-state tracking error is
shown in Fig. (7). The blue line corresponds to the case
of the nominal system with the inactive repetitive control
module. Steady state error is present due to the periodic input
disturbance. The red line shows the performance achieved
with the plug-in repetitive controller which was activated at
time t = 5s. It takes one period of T = 0.628s to learn the
corresponding corrective action which suppresses the tracking
error significantly. The peak error is reduced approximately
by factor of 150.

The functionality of the designed RC controller is validated
also experimentally using the aforementioned motion testbed.
Figure 8 shows the evolution of the velocity tracking error
during a periodic motion task. The plug-in RC part was
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switched at time t = 5. Peak error is reduced from 16.1rpm
to 3.1rpm and the root-mean-square value is brought down
from 8.3 to 0.9.

V. CONCLUSION

The paper presents a novel approach to design of a class
of repetitive controllers consisting of a conventional PI com-
pensator extended by an internal model of a generic periodic
disturbance in the plug-in type topology. Both parts of the
control scheme can be tuned either sequentially or simultane-
ously. The controller parameters are derived in a systematic
manner with the use of the H∞ regions method allowing to
translate all the important design constraints directly into the
parametric plane of the feedback controller. All the existing
solutions are derived at once if they exist. Multiple criteria can
be combined easily and the user acquires both qualitative and
quantitative insight into the problem. The proposed method
can be adapted to other controller types with two or three
parameters. Discrete-time formulation is also possible. Future
research will cover both new theoretical aspects and imple-
mentation of the developed method in the form of Matlab
toolbox.
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