
I™ M ECS H
SwULrt lAtciwAYCrV^Lc SCtUMÌXTÌTlA,

D6.1: Test benchmarking and strategy

Doc ID 18112301R05

Doc Creation Date 27 MAR 2018

Doc Revision 05

Doc Revision Date 12 DEC 2018

Doc Status Released

Work Package Deliverable ID

WP6: implementation and integration of
l-MECH platform

Executive summary

D6.1: Test benchmarking and strategy

This document covers the strategy to be applied for the evaluation of the different component test and
the integration test. The benchmark for performance testing will be specified in this report. The report
also summarized benchmarking of subcomponents reused from other linked project.

(Main)Authors Carlos R. de Yurre (AOTEK). Michael Walsh (Tyndall)

Keywords

Test, verification, validation, integration, platform, building block.

Ref. Ares(2018)6445441 - 14/12/2018

Doc ID 18112301R05

X»ME6H
Stuurt tAt^i^oĄro^ic SobMixrt^

D6.1:
Test benchmarking and strategy

Doc Creation Date

Doc Revision

Doc Revision Date

Doc Status

27 MAR 2018

05

12 DEC 2018

Released

Coordinator
Tel.
E-Mail
Internet

Fagor Aotek
0034 943 039 805
yurre@aotek.es
www.aotek.es

(Open) Issues & Actions
Open Issues (and related actions) that need central attention are part of a file called “IAL - Issues & Action List -
WP6” which can be found in the Google Drive Partner Zone.

ID Description Due
Date

Owner IAL ID

01-01 There is little or no description ottime scheduling. 12/2018 Carlos Yurre

OI-02

The definitions lack state machine for life cycle: when
to initialize integrators, when to initialize Fieldbus,
initialization order for BBs....When defined, the
verification must assure that important functions do
exist for them.

12/2018 Carlos Yurre

OI-03

It is not clear how BB10-BB11 relate with the rest of
BBs. It seems that they both build a tandem where
the rest of BBs can reside, but we should try to
standardize somehow the services. Verification must
assure that BB10-BB11 constraints are compatible
with l-MECH control BBs requirements

12/2018 Carlos Yurre

Document Revision History

■vision Status Date Deliverable lead Description of changes IAL ID /
Review ID

R01 Draft 27-MARCH-18 FAGOR AOTEK Initiate

R02 Draft 20-AUGUST-18 FAGOR AOTEK Include reqs. From WP2,
WP4

R03 Draft 19-SEPTEMBER-18 FAGOR AOTEK Rewrite after revision of
scope

2018 ECSEL Joint Undertaking. - Print Date 27 FEB 2018 PUBLIC Page 2 of 34

mailto:yurre@aotek.es
http://www.aotek.es

Doc ID 18112301R05

X»ME6H
Stuurt tAt^i^oĄro^ic SobMixrt^

D6.1:
Test benchmarking and strategy

Doc Creation Date

Doc Revision

Doc Revision Date

Doc Status

27 MAR 2018

05

12 DEC 2018

Released

R04 Draft 17-OCTOBER-18 FAGOR AOTEK Include proposals, FMI, XIL

R05 Release 12-DECEMBER-18 FAGOR AOTEK Corrections of internal review

Contributors

Revision Acronym of
Partner

Contributor Description of work

R01 EDI Kaspars Ozols,
Rolands Shavelis

Contribution to sections 2, 4, 5 and 6. Overall feedback on
document.

SISW Pacomé Magnin Improvement of section 5.4 to 5.8, V&V tools and methods
(adding FMI related details, PiL techniques, HiL
techniques)

see Hans Kuppens Appendix B

R02 FAG Carlos Yurre Requirements from WP2 and WP4

R03 FAG Carlos Yurre Feedback on draft

R04 FAG Carlos Yurre Feedback on draft

R05 TNI Michael Walsh Contribution to section 8

TNL Marc van Eert Contribution to section 5.11

FAG Javier Arenas Feedback on draft

2018 ECSEL Joint Undertaking. - Print Date 27 FEB 2018 PUBLIC Page 3 of 34

Doc ID 18112301R05

X»ME6H
Stuurt tAt^i^oĄro^ic SobMixrt^

D6.1:
Test benchmarking and strategy

Doc Creation Date

Doc Revision

Doc Revision Date

Doc Status

27 MAR 2018

05

12 DEC 2018

Released

Document control

Status Release

Revision 05

Reviewer Name Role Selection

Hans Kuppens Internal peer reviewer
(Sioux CCM)

X

Marc van Eert Internal peer reviewer
(Technolution)

X

File Locations (cross reference to l-MECH documents)
Via URL with a name that is equal to the document ID, you shall introduce a link to the location (either in Partner
Zone or CIRCABC)___

URL Filename Date

2017102001R01 l-MECH Requirements Table 21-OCT-2017

Abbreviations & Definitions
Abbreviation Description
BB Building Block
DoW Description of Work
HAL Hardware abstraction layer
HIL Hardware in the Loop
HW Hardware
MIL Model in the Loop
PIL Processor in the loop
XIL Any one of MIL,SIL,PIL,HIL
RTOS Real Time Operating System

2018 ECSEL Joint Undertaking. - Print Date 27 FEB 2018 PUBLIC Page 4 of 34

Doc ID 18112301R05

X»ME6H
Stuurt tAt^i^oĄro^ic SobMixrt^

D6.1:
Test benchmarking and strategy

Doc Creation Date

Doc Revision

Doc Revision Date

Doc Status

27 MAR 2018

05

12 DEC 2018

Released

SIL Software in the Loop
SW Software
FMI Functional Mock-up Interface
FMU Functional Mock-up Unit

2018 ECSEL Joint Undertaking. - Print Date 27 FEB 2018 PUBLIC Page 5 of 34

Doc ID 18112301R05

Swuurt Mtcbuxsbrcrvux, SoíaMíxtv^,

D6.1:
Test benchmarking and strategy

Doc Creation Date

Doc Revision

Doc Revision Date

Doc Status

27 MAR 2018

05

12 DEC 2018

Released

Table of contents
Schedule 7

1.1 Deliverable Completion Schedule 7

Synopsys 7

Definitions for Verification and Validation 9
Verification and Validation 9

Scope of deliverable 11

l-MECH methodology for Verification and Validation of Building Blocks 12
Rationale under V&V of Building Blocks 13
l-MECH methodology 13
Higher level requirements, objectives 15

l-MECH Model Based Design 17
l-MECH Model in the Loop (MiL) V&V Methodology 18
l-MECH Software in the Loop (SiL) Test Methodology 19
l-MECH Processor in the Loop (PiL) Test Methodology 20
l-MECH Hardware in the Loop (HiL) Test Methodology 21
l-MECH Rapid Prototyping (RP) Test Methodology 22
l-MECH Deployment Test Methodology 23
Hardware and software integration 23

l-MECH V&V definition for Building Blocks 24

l-MECH V&V for Software Building Blocks 27

l-MECH V&V for Hardware Building Blocks 29

Appendix A: l-MECH Building Block Test Documentation - Template 31

Appendix B: l-MECH Building Block Structure - Template 33

2018 ECSEL Joint Undertaking. - Print Date 27 FEB 2018 PUBLIC Page 6 of 34

Doc ID 18112301R05

XTOME(sH
SwUKrt tAt^MĄrerV^C SoÍA/J-ÍOVb*)

D6.1:
Test benchmarking and strategy

Doc Creation Date

Doc Revision

Doc Revision Date

Doc Status

27 MAR 2018

05

12 DEC 2018

Released

1. Schedule

1.1 Deliverable Completion Schedule
The timing diagram provided below details a suggested completion schedule for the associated
deliverables in WP6. A two phased based schedule is envisaged with key validation and verification
deliverables submitted toward the end of year 2 and final reports to be compiled nearing project
completion.

2. Synopsys
From Description of Work, DoW, “the Task 6.2 Validation of l-MECH SW components/platform:
Library of SW functional blocks implementing the developed algorithms from WP4 and WP5 will be
validated against requirements developed in WP2 and precised in Tasks 4.1 and 5.1.
Following agile W approach, the iterative validation will be reported in 3 stages (D6.1, D6.3 and D6.5),
each followed by integration process (Task 6.4). The focus will be put on functional and performance

2018 ECSEL Joint Undertaking. - Print Date 27 FEB 2018 PUBLIC Page 7 of 34

Doc ID 18112301R05

XTOME(sH
SwUKrt tAt^MĄrerV^C SoÍA/J-ÍOVb*)

D6.1:
Test benchmarking and strategy

Doc Creation Date

Doc Revision

Doc Revision Date

Doc Status

27 MAR 2018

05

12 DEC 2018

Released

requirements of all stakeholders (SMEs working in mechatronic innovations (ROV, RED, TECO),
control system integrators (ITML), manufacturing end users (GMV, PHI, COR, VIS)) and whether the
results are efficient, flexible and general enough in order to fulfil their needs.
The ability to deploy SW intelligence (UWB, EDI, TEK, BUT, UNIBS, UMO, TNI) onto commercial
platforms will be tested (see consequential Task 6.5). The Multi-OS software stack (i.e, hypervisor and
RTOSs) for the platform will be tested as well (EVI). The SW validation results will be continuously
documented and delivered to the l-MECH development process.”

From DoW, the deliverable D6.1 covers the strategy to be applied for the evaluation of the different
component test and the integration test. The benchmark for performance testing will be specified in
this report.
This document is based on l-MECH available requirements at the moment (D3.1, D4.1, D5.1).
The work on the Tasks 6.2 and 6.3 should take into account those requirements and influence them
as to fulfil validation.
A common, expressed and exposed view of the whole architecture of an l-MECH platform is
mandatory. The internal structure of Building Blocks up to the level needed for validation must also be
expressed in some way.
It is relevant for the sake of clarity that the terms used for logical entities are defined and consistently
used through any validation document. It is not clear that every functionality can be tested.
Work on Task 6.1 leads Building Block definition.

As for D4.1, this deliverable is strictly related to the activity of WP4 “Control Layer design and
development”, which aims at developing centralized and decentralized motion control strategies
for mechatronic systems.
Then, D4.1 (D4.2) can be used to test the results of the building blocks directly related to the
control layer, that is:
BB6 “Self-commissioning velocity and position control loops”,
BB7 “Vibration control module”,
BB8 “Robust model-based multivariable control”
BB9 “Iterative and repetitive control module”
and of those building blocks (BB10 “Control Specific Multi-many core Platform” and BB11
“RTOS for multi-many core platform”) which are related to the HW/SW platforms which allows
the implementation of the advanced control algorithms.

Also from D4.2, requirements are divided in Performance, Technical and Realization.
Technical requirements are directly connected to Functionality and could also be called Functional
requirements. These answer the “What’s the BB functionality?” question, and a list of BBs will be
included with a description for how everyone complies with the V&V requirements.

2018 ECSEL Joint Undertaking. - Print Date 27 FEB 2018 PUBLIC Page 8 of 34

Doc ID 18112301R05

XTOME(sH
SwUKrt tAt^MĄrerV^C SoÍA/J-ÍOVb*)

D6.1:
Test benchmarking and strategy

Doc Creation Date

Doc Revision

Doc Revision Date

Doc Status

27 MAR 2018

05

12 DEC 2018

Released

l-MECH hardware building block components will be validated against the requirements developed in
WP2 and further refined in Tasks 3.1 and 3.2.

BB-1 Platform for Smart Sensors with Advanced Data Processing
BB-2 Real-time wireless sensors providing complementary feedback information
BB-3 Robust condition monitoring and prediction diagnostics
BB-4 High Speed Vision
BB-5 High performance servo amplifier design
BB-10 Development / selection of control specific multi-many core platform

System behaviour layer integration and connectivity requirements and specification for each of the
components are sources in Tasks 5.1 and 5.2.

3. Definitions for Verification and Validation
3.1 .Verification and Validation

Verification and validation are independent procedures that are used together for checking that
a product, service, or system meets requirements and specifications and that it fulfills its
intended purpose.

Verification is the process of evaluating a system or component, to determine whether the
products of a given development phase satisfy the conditions imposed at the start of that phase.
Its aim is building the system right.
It answers the questions: “Does the system meet its requirements?”, “Am I building the product
right?", "Did I build what I said I would?"

Validation is the process of evaluating a system or component during or at the end of the
development process, to determine whether it satisfies specified requirements. Requirements
Validation is the process of confirming the completeness and correctness of the requirements.
Its aim is building the right system. Validation determines that a system does all the things it
should and does not do what it should not do.

It answers the questions: “Are the system design requirements correctly defined and mean
what we intended”, “Am I building the right product?”, "Did I build what I need?"

2018 ECSEL Joint Undertaking. - Print Date 27 FEB 2018 PUBLIC Page 9 of 34

Doc ID 18112301R05

XTOME(sH
SwUKrt tAt^MĄrerV^C SoÍA/J-ÍOVb*)

D6.1:
Test benchmarking and strategy

Doc Creation Date

Doc Revision

Doc Revision Date

Doc Status

27 MAR 2018

05

12 DEC 2018

Released

Validation is done against user requirements. This means that for validation of l-MECH BBs, the
platform should have functionalities related to layer 3, that is, a PIL, HIL or deployment phases. The
communication with the user (eg. OPC UA) must be present and interaction defined must be
validated.

2018 ECSEL Joint Undertaking. - Print Date 27 FEB 2018 PUBLIC Page io of 34

Doc ID 18112301R05

X»ME6H
Stuurt tAt^i^oĄro^ic SobMixrt^

D6.1:
Test benchmarking and strategy

Doc Creation Date

Doc Revision

Doc Revision Date

Doc Status

27 MAR 2018

05

12 DEC 2018

Released

4. Scope of deliverable

The document addresses the methodology for validation and verification of Building Blocks.
On a first approach, these BBs have common characteristics derived from being an l-MECH
Building Block that must be verified, and specific behaviours from the requirements of every
one, derived mainly from D4.2 for SW Building Blocks and from D3.2 and D5.2 for HW Building
Blocks.

Total set of
requirements

Figure 3

The figure 3 is borrowed from the WP6 kick-off meeting presentation. It shows the dependence
graph between different requirements deliverables. The same set of requirements are the input
for pilot testing. WP6 refers to testing the Building Blocks, where Task 6.2 focuses on software
BBs whilst Task 6.3 addresses hardware BBs. This figure also shows that there is a difference
between verification and validation and test, while sharing requirement documents.

That's an important division and should be kept in mind when dealing with requirements that
can’t be tested without the whole platform and hardware. This document refers frequently the
documents named in the figure (D2.3, D2.4, D4.2....). It is supposed that they have been read
before.

The following figure (figure 4) illustrates the requirements generated in each of the work
packages for each of the associated building blocks. It also highlights where verification and
validation will take place for each of these requirements.

2018 ECSEL Joint Undertaking. - Print Date 27 FEB 2018 PUBLIC Page n of 34

Doc ID 18112301R05

X»ME6H
Stuurt tAt^i^oĄro^ic SobMixrt^

D6.1:
Test benchmarking and strategy

Doc Creation Date

Doc Revision

Doc Revision Date

Doc Status

27 MAR 2018

05

12 DEC 2018

Released

l-MECH Requirements for Validation and Verification
General principles/requirements

defined in D2.4,
Mapped against BB functional

requirements.
New requirements where applicable?

Validation and verification in WP6

Functional requirements refined
by BB owners from D2.4, D3.2,

D4.2, D5.2

Defined in D7.1

Validation and verification in
WP7

l-MECH Generic/Platform Requirements

Interoperability Modularity Self-diagnostics Self-reflection Maintainability
Requirements Requirements Requirements Requirements Requirements

l-MECH BB Functional Requirements

l-MECH Pifot/Demo/Use Case Requirements
Pilot 1 Pilot 2 Pilots Use Case 1.1,1.2 and 1.3 Demonstrator 1

Requirements Requirements Requirements Requirements Requirements

Pilot 3 Pilot 4 Use Case 2.1 and 2.2 Demonstrator 2
Requirements Requirements Requirements Requirements

Figure 4

5. l-MECH methodology for Verification and
Validation of Building Blocks
Building Blocks and layers are described in the DoW. In what follows we will assume all BBs
will have some common functionality. These common functionalities, related with the l-MECH
objectives, build up an l-MECH Building Block. A wider description of abstract building blocks
can be found in D2.3, Ch.2.2.1.1

l-MECH Building Block definition: a logical block with some exposed behaviour or
functionality that fulfils a minimum set of the defined l-MECH requirements. In what
follows it Is called BB.
l-MECH refers mainly to model based system engineering. This process is described in D2.3, in
chapter 2.2.1.3. In the V model, V&V standing for verification and validation, the methodology

2018 ECSEL Joint Undertaking. - Print Date 27 FEB 2018 PUBLIC Page 12 of 34

Doc ID 18112301R05

X»ME6H
Stuurt tAt^i^oĄro^ic SobMixrt^

D6.1:
Test benchmarking and strategy

Doc Creation Date 27 MAR 2018

Doc Revision 05

Doc Revision Date 12 DEC 2018

Doc Status Released

implies that requirements are written for the system and hierarchically for the
subsystems.
Simulink is a platform of very broad acceptance and most of BBs will exhibit a Simulink
interface. However, simultaneously, other interfaces based on open standards will be
introduced in order to assure interoperability between BBs.

5.1. Rationale under V&V of Building Blocks
The aim for a BB developer is to offer a module, possibly including hardware, which can be
easily integrated in a system that follows the Model Based design paradigm. Passing the
Verification and Validation phases assures that such a system has been modelled and that its
model can be used seamlessly in combination with other modules in simulation. This warranties
then interoperability at simulation level.
But this is just part of the work. To run on the target the code can be generated from the
simulation platform (the preferred method) or be included as DLL, VHDL...or any other binary
form. Verification can at least assure that there is code available for the target processor, as
declared by the BB developer.
And finally, Validation for the system designer includes assuring that the chosen BB is the right
one for the higher level requirements. This is tied to the functional requirements and
benchmarking. For instance, that a sensor has the needed bandwidth and resolution, and that
the information comes with a delay compatible with its intended use. Verification of functional
requirements assures that at least that information is present. What cannot be assured is that
the figures are enough for the system. This is a high level validation phase.
At least in PIL and HIL phases, connection from external tools is needed. Accessing variables,
parameters and tunable parameters is expected to be done. This can be viewed as a validation
phase, as long as the names of the variables and namespaces (semantics) are declared.
Verification will tell whether the namespace does exist and validation that declared data are
available.
All these V&V activities should warranty that using a module, named as an l-MECH BB,
integrates seamlessly in Model Based Design, from simulation to deployment. And this is the
base of the l-MECH methodology.

5.2. l-MECH methodology
The l-MECH methodology involves all phases for engineering and relies on virtual prototypes
for system and control. Model-in-the-loop (MIL), software-in-the-loop (SIL),
processor-in-the-loop (PIL) and hardware-in-the-loop (HIL) must be considered. Rapid
Prototyping can be an alternative or complement to HIL in many cases when dealing with
control blocks.
l-MECH methodology must warrant that any BB that passes the verification and validation
phases related to architecture meets the objectives of interoperability, modularity, ..., and then

2018 ECSEL Joint Undertaking. - Print Date 27 FEB 2018 PUBLIC Page 13 of 34

Doc ID 18112301R05

X»ME6H
Stuurt tAt^i^oĄro^ic SobMixrt^

D6.1:
Test benchmarking and strategy

Doc Creation Date 27 MAR 2018

Doc Revision 05

Doc Revision Date 12 DEC 2018

Doc Status Released

• can be connected to other l-MECH BBs
• can be used as a model in a model based design framework and toolchain
• can be deployed on at least a target that conforms to l-MECH standards (being an

l-MECH BB11)
• can be accessed at run time through layer 3 interface
• can be configured through layer 3 interface

But it is important to remember some facts:
- For Model Based Design, both MIL and PIL are mandatory at some point during V&V
and integration.
- l-MECH’s aim is oriented to deployment where more features need to be added not
addressed by the l-MECH BBs. Notably, coordinating calls and providing services to virtualize
field buses.
Verification will test:

• that the Functional Mockup exists.
• that it is compliant with FMI standard (with a compliance checker)
• that description of block aims and name is included in the FMU description xml.
• that a preferred namespace is defined for OPC UA communication.

As it has been defined before, an l-MECH BB implements parts of the l-MECH functionality.
Given the different disciplines involved, three types of modules can be differentiated:

• mainly software functionality (i.e. control algorithms)
• mainly hardware functionality (i.e. sensors and actuators)
• a hardware processing platform to deploy the software functions and connect to

sensors and actuators.

All three parts are needed to build a control system. The goal of methodology for verification
and validation is the same: to validate that the promised functionality is provided by the BB.
However, the way to proof this differs for hardware and software parts.
For software blocks a MIL tests to prove the functional is working is mandatory.
For hardware blocks a HIL tests to prove hardware, software compatibility is mandatory.
For the processing platform validation is mandatory that software building blocks can be
deployed and that sensors and actuators can be used.

2018 ECSEL Joint Undertaking. - Print Date 27 FEB 2018 PUBLIC Page 14 of 34

Doc ID 18112301R05

X»ME6H
Stuurt tAt^i^oĄro^ic SobMixrt^

D6.1:
Test benchmarking and strategy

Doc Creation Date

Doc Revision

Doc Revision Date

Doc Status

27 MAR 2018

05

12 DEC 2018

Released

5.3. Higher level requirements, objectives
Some common requirements for architecture of Building Blocks derive directly from the l-MECH
objectives in DoW :

BBs are interoperable, what means having a very clear and exposed behaviour
regarding inputs, outputs and internal states and transitions. The validation task must read this
information and test any state and transition. In fact, for every state, both available and don’t
care transitions shall be known and tested.
A standard way to share or exchange models, including the possibility of cosimulation is
Functional Mockųp Interface https://fmi-standard.ora/
A Functional Mockup Unit (FMU) is a .zip file containing several directories and source or binary
code and addressing one of two targets: Model exchange or Cosimulation. The specifications
are available free at https://fmi-standard.ora/downloads/.
There is also a free tool for compliance checking:
httPs://trac■fmi-standard■orα/browser/branches/publ¡cЯest FMUs/Comoliance-Checker

FMI defines two different interfaces, one for model exchange and another for co-simulation. At
least one of them must be present. The compliance checker verifies that an FMU has the
expected files and functions defined in the standard. From this point of view, defining FMI as the
standard interface definition for l-MECH has the advantage that interoperability of models of the
BBs is granted for all the simulation tools that support importing FMUs and verification of the
formal aspects can be done with the compliance checker.
l-MECH BBs will use specification from FMI for all simulation cases. If a BB will not be a
FMU (with good rationale), a equivalent Simulink interface specification should be defined.

BBs are modular. This means that aggregations of BBs are also BBs or at least
have a BB behaviour. In fact, this means, and is a requirement, that any composition of BBs
that wants to export an l-MECH BB behaviour must comply with all the requirements for V&V.
To this end, there is an ongoing project under the Modélica Association umbrella:
https://www.modelica.ora/projects
The System Structure and Parameterization of Components for Virtual System Design
project (SSP) addresses the problem of composition of FMUs.
The document 10_2017_FMI-Usermeeting_SSP-StatusandPlans.pdf defines objectives:

• Define a standardized format for the connection structure of a network of components
(FMUs in particular).

• Define a standardized way to store and apply parameters to these components.
The developed standard / APIs should be usable in all stages of development process
(architecture definition, integration, simulation, test in MiL, SiL, HiL).

2018 ECSEL Joint Undertaking. - Print Date 27 FEB 2018 PUBLIC Page 15 of 34

https://fmi-standard.ora/
https://fmi-standard.ora/downloads/
httPs://trac%e2%96%a0fmi-standard%e2%96%a0or%ce%b1/browser/branches/publ%c2%a1c%d0%afest
https://www.modelica.ora/projects

Doc ID 18112301R05

X»ME6H
Stuurt tAt^i^oĄro^ic SobMixrt^

D6.1:
Test benchmarking and strategy

Doc Creation Date

Doc Revision

Doc Revision Date

Doc Status

27 MAR 2018

05

12 DEC 2018

Released

While work seems not being concluded, the proposal is following this project and possibly
adhering to the standard file formats defined there. But from the point of view of V&V of
l-MECH BBs, the requirement keeps the same, the composite block must behave like a BB
and have the FMI defined files.

BBs have (self-)diagnosis. If this is a mandatory requirement, the validation phase
must have some means to verify that diagnosis works. This can be done by injecting an error
somehow or putting the system to an error state. This is closely related with validation.
Having test points and means to record data is a common feature for diagnosis and validation.
From the point of view of a BB or an FMU when dealing with simulation, accessing the model
and its variables both for injection of signals and data recording is mandatory. Self diagnosis can
be considered as diagnosis done with software provided by the BB builder (an example is
provided in appendix B). Comparing output after injecting signals to prescribed patterns needs a
set of services. This feature has been addressed by the Association for Standardization of
automation and Measuring Systems (ASAM) https://www.asam.net/ in the project ASAM XIL
Maintenance, where XIL denotes the full process (X = M,S,P,H) . The project has adhered to
FMI for model exchange and is referenced in the FMI web page:

httDs://fmi-standard.ora/related/ .
Specifications are found there as a link. This seems to be an ongoing project also, and the
proposal is to follow it, evaluating specifications. But the document addresses the definition of
test bench, injection of signals, definitions for signal form generation, record and synchronization
of signal values and even scripting, everything oriented towards interoperability of hardware to
make tests and script reuse.
If not following a standard, the requirements must specify what (self)-diagnosis procedures are
implemented and how to call them. For FMI, at least validation of machine state as found in the
model exchange standard should be carried out.

BBs have self-reflection. This is a very important point regarding validation. The
validation for a platform must discover any component and ask for its description. This
description refers to its internal structure, state... in particular and very important, the state of
the BB can be interrogated. FMI for model exchange defines (ch 3.2.3) the state machine for
calling sequence of C functions.
FMUs can have parameters and tunable parameters. While a BB can define its own variables,
the inputs, outputs, parameters... will be exported in deployment to external tools. The proposal
is that layer 3 offers an OPC UA server to access BBs’ data. Requirements should be written
that define which signals are exported and which companion standard is used. The supported
companion standards names will be included in the description file. Using of several
namespaces is possible in OPC UA. For instance, the position of an axis could be named with
the sercos companion standard and, at the same time, accessed with the VDW companion

2018 ECSEL Joint Undertaking. - Print Date 27 FEB 2018 PUBLIC Page 16 of 34

https://www.asam.net/

Doc ID 18112301R05

X»ME6H
Stuurt lAt^i^aĄro^ic SobMixrt^

D6.1:
Test benchmarking and strategy

Doc Creation Date

Doc Revision

Doc Revision Date

Doc Status

27 MAR 2018

05

12 DEC 2018

Released

standard for machine tools. Verification will assure that named variables do exist and can be
accessed.

BBs maintainability is of no relevance for testing except where there is an exposed
information or behaviour that should specifically be tested, as is the case of BB3, where this
functionality is covered.

5.4.1-MECH Model Based Design
A very short description of the different XiL phases follows. It is just an introductory part to fix
definitions and controlling context. HiL is usually not very well understood or is mixed with rapid
prototyping or even deployment. In fact, there are many possibilities regarding HIL hardware. In

what follows, background color is orange for
simulation hardware and blue for target hardware
or software.
MiL is the only mandatory phase for Model Based
Design, everything is in the simulation platform.
Depending on availability and designer needs,

plant model can vary from functional models to detailed systems models where every relevant
phenomena, including non-linear effects, field buses and noise could be captured. Depending
the level of details and computational power, simulations speeds could be faster to slower than
real time.

In SiL, all software is compiled (no more
dependency on simulation tool) and simulating with
fixed step solver at final sample rate, but not in
real-time yet. There are no timing issues, as time is
simulated, and complex models are then possible.
The aim of SIL is to verify that the code works as

expected in simulation, that is, that the controller model and the controller software have similar
behaviour.
The blue color means that the code for the controller software is compiled while running (orange
color of the enclosing rectangle) in a simulation platform.

In PIL phase, controller code runs native on the
definitive platform (that’s why the color of blocks is
blue). The definitive platform could be emulated.
The aim is to verify that the code works as

PIL
r \

Controller
Software

t# Г 1
Plant

Software

SIL

Controller
Software

u r ■·,
Plant
Model

L---- -------- J

MIL
ŕ ■■■■.

Controller
Model <=>

f “■*
Plant
Model

^------ —----j

2018 ECSEL Joint Undertaking. - Print Date 27 FEB 2018 PUBLIC Page 17 of 34

Doc ID 18112301R05

XTOME(sH
SwUKrt tAt^MĄrerV^C SoÍA/J-ÍOVb*)

D6.1:
Test benchmarking and strategy

Doc Creation Date

Doc Revision

Doc Revision Date

Doc Status

27 MAR 2018

05

12 DEC 2018

Released

expected in real time and also interaction with other software parts, interrupt system, etc...
In HIL phase, controller code runs native on the
definitive platform and plant model or software runs
in a different platform.(Hence the two background
colours)
The plant can be implemented in hardware, FPGA,
industrial PC...or be directly the Simulink model

running in the simulation platform. There are even dedicated hardware platforms to download
directly models from Simulink. The aim is to validate the code on complex models without the
real plant.
Rapid prototyping is often confused with HIL, while being different. Rapid prototyping needs
first a prototype or even the real mechanical device and analog hardware (for instance a motor
and a driver or class D amplifier). A platform where control software coming from the controller
model and some real time software drives the prototype and is used to validate algorithms. This
platform can be the one provided by BB10 and BB11.

I-MECH architecture defines three layers for control applications. Depending on the XIL phase
these layers fall in the left or right part of the above figures. For every specific BB the mapping
of layers to processors must be defined, but not all the phases must be implemented (some are
not even possible).

5.5. I-MECH Model in the Loop (MiL) V&V Methodology
For Model based Design this step is mandatory.
As identified in D6.2, Simulink is the de-facto standard for development and validation in MIL,
however there are other simulation tools available which should be also considered, especially
those which are based on open standards. Therefore I-MECH BBs must take into account
different scenarios for MIL.

• In case of Simulink-based development, the BB shall be published as Simulink library
(for use in Simulink) and also as FMU (for import in other simulation tools).

• In case of BB developed in other tools, it shall be published as a FMU (for import in
Simulink).

• In case of BB developed in C/C++, it shall be published as an S-Function (for use in
Simulink) and also as a FMU (for import in other tools).

Dealing with all these scenarios the interoperability of I-MECH BBs between simulation tools in
MIL is guaranteed.
It should be remarked that since latest Matlab release, i.e. R2018b, there is FMU Import natively
supported and FMU Export (Co-simulation mode) natively supported via “Tool-Coupling

HIL
----------------- >

Controller Plant
Software Software

L J

2018 ECSEL Joint Undertaking. - Print Date 27 FEB 2018 PUBLIC Page 18 of 34

Doc ID 18112301R05

XTOME(sH
SwUKrt tAt^MĄrerV^C SoÍA/J-ÍOVb*)

D6.1:
Test benchmarking and strategy

Doc Creation Date

Doc Revision

Doc Revision Date

Doc Status

27 MAR 2018

05

12 DEC 2018

Released

Co-Simulation FMU Export for Simulink”, although end user still needs Simulink license. Another
alternative for FMU Export from Simulink can be the Modelon tools.

The FMU file contains everything to simulate the BB in a
simulation platform that can import this file format
(typically windows or linux, on 32 or 64 bits base). There
is standard a tool (FMI compliance checker) that verifies
that such an FMU is compliant with FMI requirements.
Using FMI for MiL couplings requires to be careful (as
any kind of fixed-step continuous simulation couplings)
regarding the coherency of FMU time steps with system
dynamics and controllers resolutions. Timesteps larger

than critical systems dynamics will lead to simulation incoherencies, which are diagnosticable by
studying steady state oscillation (pumping), or high dependency of simulation results from
simulation steps. Algebraic loops could also lead to cosimulation issues, but could be broken
with usual system simulation strategies. Even if both FMI for co-simulation and model exchange
are available, the co-simulation one should be preferred as it’s the most behaviorally
conservative.
I-MECH BBs must have written requirements for functionality (they already have them in D4.2
and D5.2 documents). If adhering to ASAM-XIL or with a similar system, the functional
requirements could be tested in the simulation platform.
Regarding l-MECH layer distribution, all the interfaces and used BBs are included in the
modelling platform. For L2-L3 interface, tuning and/or monitoring scripts should be provided to
evaluate the functional requirements of the BB, as proposed in Appendix B. L1-L2 interface
(typically the Ethercat fieldbus) can be modelled or not depending on design engineer needs.
User interface at this level is provided by the simulation platform.
Plant Models can be done directly in the simulation platform language or imported. The
preferred format is .fmu files with, may be, some extensions. Verification and Validation must be
done at least at this level.

5.6. I-MECH Software in the Loop (SiL) Test Methodology
FMUs have descriptions for the platforms supported by the code. If one of these platforms is
similar to the simulation platform or there’s an emulator for it, SiL can be carried out for the
control BBs. (BB6-BB9). For instance, if x86 is supported and the target for deployment is also
an x86, object code (may be a dll or so) can be used. Potential license issues have also to be
considered, as most of the simulation software still call for licenses systems with FMIs (unless
they have the option to remove the license calls). FMI specific overheads also have to be
considered. Another way to implement MiL is also to directly implement part of the code to be

Layer 2 : Controllers

FleldBus (ethercat)

Layer 1 : Sensors and actuators

Plant Model

2018 ECSEL Joint Undertaking. - Print Date 27 FEB 2018 PUBLIC Page 19 of 34

Doc ID 18112301R05

X»ME6H
Stuurt tAt^i^oĄro^ic SobMixrt^

D6.1:
Test benchmarking and strategy

Doc Creation Date

Doc Revision

Doc Revision Date

Doc Status

27 MAR 2018

05

12 DEC 2018

Released

verified as a simulator component. This approach is only applicable with low-level programs
typically in C, with limited specific dependencies.
Only functional validation makes sense here. Verification has been carried out at MiL. But here
one can validate that the chosen step size is correct or even measure control loop time (some
emulation targets count instruction cycles, for instance).

Thanks to this phase and the V methodology, early
detection of otherwise complex to find problems can be
detected (for instance, longer than expected cycle
times due to events, etc...)
Regarding l-MECH layer distribution, there aren’t many
changes, and everything is performed in the simulation
platform.
User interface is done with the simulation platform
means.

Layer 2 : Controllers

FieldBus (ethercat)

Layer 1 : Sensors and actuators

Plant Model

5.7. I-MECH Processor in the Loop (PiL) Test Methodology
This phase can be reached from MiL directly or from SiL. The final platform must be available.
Two approaches are possible on this phase:

• The first is to fully virtualize the control platform (OVP, qBox, Imperas, Veloce, SIMIT...),
so reproducing the full SW and HW behavior based on the final design. These virtual
platforms could interact with the plant models to be operated through dedicated
interfaces (SystemC, FMI) or network (OPC UA)

• The second is to load the model on the final target platform. In this case accuracy of the
plant is no issue, but speed is important. Therefore plant models must be simplified
when they are computational too complex.

Even with these restrictions, this is a very interesting
phase where errors due to interaction of the control
loops with the general timing and software of the
target platform can arise and are easier to correct (and
less dangerous) than in the real prototype.
As in the SiL case, l-MECH verification done in MiL is
valid and what this phase adds is validation in the real
target. As the models will be possibly simplified, this
phase doesn’t eliminate the need for further functional
testing or validation (for instance, friction would not
typically be considered at this level and must be
carried out later).

Layer 3 : User Interfaces

L3-L2 Interface (OPC-UA?)

Layer 2 : Controllers

FieldBus (ethercat)

Layer 1 : Sensors and actuators

Plant Model

© 2018 ECSEL Joint Undertaking. - Print Date 27 FEB 2018 Page 20 of 34PUBLIC

Doc ID 18112301R05

X»ME6H
Stuurt tAt^i^oĄro^ic SobMixrt^

D6.1:
Test benchmarking and strategy

Doc Creation Date

Doc Revision

Doc Revision Date

Doc Status

27 MAR 2018

05

12 DEC 2018

Released

One specific step in this engineering phase for l-MECH is that layer 3 should be fully functional
with respect to protocols (e.g. OPC UA) and that the information models (e.g. OPC UA
namespaces and companion standards) can be validated in this or in the HIL phase.
This introduces as requirement that the companion standard to be used for a BB must be
declared somewhere. It should be included as a new tag in the FMU’s xml file.
PIL always has a simple plant model, fitting within the computational constraints of the target
platform, but it is anyway a good point to verify many of the controller functional requirements
under real conditions. With simple plant and layer 1 models, this is a very useful phase to
validate higher order requirements or Building Blocks, like trajectory generators, etc...
Moreover, many of the functionalities of the layer 3 can be verified and validated here, for
instance, OPC UA protocol, control variables and parameters discovering and read-write, etc...

5.8. I-MECH Hardware in the Loop (HiL) Test Methodology
The HiL phase is very interesting for problems where the plant is complex, big, expensive orjust
unavailable... and a detailed model, while also costly to build and validate, is the best solution to
try different control strategies. These could fire errors that would damage the machine if tested
on a prototype.
Here, the control loops will run on the target platform which is interfaced with RT plant models.
There’s more than one possibility to connect the target to the plant simulator, but the preferred
way, when possible, is using in the target all the final hardware (for instance the field buses) and
have its counterpart in the RT simulation platform (dSPACE, Nl, or PC with interfaces
conditioning, common buses...). Hybrid systems exist where some hardware (sensors or
actuators) are also used.

Layer 3 ; User Interfaces

L3-L2 Interface (OPC-UA?)

Layer 2 : Controllers

FieldBus (ethercat master)

FieldBus (ethercat slave)

Layer 1 : Sensors and actuators

Plant Model
L j

HiL, while requiring investment in terms of equipment
and RT simulators building and validation, can be
mandatory for highly complex systems or where
machine availability is scarce and the technical risk is
high. As physical models come from different modelling
tools and simulation platforms are available from
various vendors, the same requirement in l-MECH
methodology is mandatory. To work in an l-MECH
ecosystem, the plant must be modelled as an FMU RT
or Simulink plant model.
In case of FMU RT, this step can be a little bit more
complicated in that, for some models and tools,
co-simulation is needed. This has already been
addressed in the FMI specification, and FMUs can have
the files that the simulation platform uses. The
description of environments, supported information

2018 ECSEL Joint Undertaking. - Print Date 27 FEB 2018 PUBLIC Page 21 of 34

Doc ID 18112301R05

X»ME6H
Stuurt tAt^i^oĄro^ic SobMixrt^

D6.1:
Test benchmarking and strategy

Doc Creation Date

Doc Revision

Doc Revision Date

Doc Status

27 MAR 2018

05

12 DEC 2018

Released

models, etc... is written in an xml file inside the .fmu file (a zipped directory).
HIL determines that the target platform is the final platform, so that both control layer (layer 2)
and interface layer (layer 3) are in its final version.
Depending on the quality of the models for sensors and plant, everything can be verified and
validated, including data gathering and high level algorithms.
For instance, even temperature models can be run on the simulation platform or failure injection
can be done to trigger error procedures in the controller.
HIL may have drawbacks if complex models for sensors and plants are needed. They are
expensive to build and validate, and a high-end processor is needed. For very detailed
simulation, models in different formats could be needed (e.g. p-spice models of power
electronics to care for effects of dead times and other non-linearities) and a HF test bench can
be cheaper while not as flexible. Opportunities like selectively reducing models (linearized, RSM
networks, neural networks, etc...) could solve RT compliance issues by enabling a good
performance-representativity tradeoff.

5.9. I-MECH Rapid Prototyping (RP) Test Methodology
This is a technique used by some l-MECH project partners for validation and test of their
systems.
It is useful when there’s a mechanical prototype available (example, a motor and amplifier...)
with inputs and outputs.
The control system runs on a platform where direct downloading of control software from the
simulation tool is possible. User interface and access to signals, etc... are available as layer 3

software (for PIL, HIL and RP). The whole system
greatly simplifies development of control algorithms,
especially for “small” systems where the prototype can
be directly the plant or a simplified, scaled, mock-up of
it. Design of the controller is done graphically like in
simulation and many high level blocks are ready for
signal processing, etc... National instruments offersuch

systems, as well as some companies partner Simulink for the same purpose (dSpace,
Speedgoat), the same companies behind HIL dedicated hardware.
Functional requirements verification can be done as the dedicated platform allows injection of
signals and use of many of the verification and validation blocks of the native simulation
platform.

Layer 2 ; Controllers

FieldBus (ethereat)

PROTOTYPE

© 2018 ECSEL Joint Undertaking. - Print Date 27 FEB 2018 Page 22 of 34PUBLIC

Doc ID 18112301R05

X»ME6H
Stuurt tAt^i^oĄro^ic SobMixrt^

D6.1:
Test benchmarking and strategy

Doc Creation Date

Doc Revision

Doc Revision Date

Doc Status

27 MAR 2018

05

12 DEC 2018

Released

5.10.1-MECH Deployment Test Methodology
HIL mode or even rapid prototyping is very close to the reality. But, regarding verification and
validation of l-MECH BBs, the procedure can be carried on an individual basis, BB by BB with
specific models for functional validation of key features. When combining several BBs and other
legacy control code or general software, some problems can happen and new behaviours must
be verified.
When dealing with a bunch of BBs and connections between them, new problems regarding
calling order, resolution of possible algebraic loops, etc...must be taken into account. To solve
these problems, an “FMI master” will be an important part of the system, or a scheduler for

Simulink generated software. When all the control code
is generated by the simulation system, this is left to its
internal algorithms. But when dealing with a hybrid
system of new and legacy code some rules must be
defined or the legacy code must be imported somehow
to the simulation platform.
Finally, regarding connection hardware, some
virtualization means are necessary if some degree of
“plug and produce” or whatever plug & play strategy is
needed. Ideally, replacing Ethercat with Profínét IRT or
Sercos3 in a platform for a new project shouldn’t need
changes in the l-MECH BBs or its combinations.
All these issues must be considered in the BBs
architecture, especially in BB10-BB11.

5.11. Hardware and software integration

Layer 3 ; User Interfaces

L3-L2 Interface (OPC-UA?)

Layer 2 : Controllers

FieldBus (ethercat)

Layer 1 : Sensors and actuators

PROTOTYPE

The validation and verification for integration the hardware and software building blocks, focus
on the collaboration of the building blocks. This is shown in three areas: interfacing,
methodology and performance.

• Interfaces:
• Can building blocks communicate with the standardized external interfaces (layer 1 ->

layer 2) and (layer 2 -> layer 3)
• Do building blocks on different layers find each other and work together when needed for

the functionality of the building block?
• Methodology:

• Are software modules exchangeable across hardware platforms?
• Are HIL (hardware in the loop) tests supported?

• Performance:

2018 ECSEL Joint Undertaking. - Print Date 27 FEB 2018 PUBLIC Page 23 of 34

Doc ID 18112301R05

X»ME6H
Stuurt tAt^i^oĄro^ic SobMixrt^

D6.1:
Test benchmarking and strategy

Doc Creation Date

Doc Revision

Doc Revision Date

Doc Status

27 MAR 2018

05

12 DEC 2018

Released

• Are performance requirements met?
• Is separation of concern reached, in a sense that one performance wise non behaving

building block does not affect the performance of another building block?

The software hardware Integration will take place in separate phases.
• a pre-integration phase
• Integration the software blocks on the target hardware platform

o Focus on layer 2 parts of BB6, BB7, BB8, BB9 with BB10/BB11
• Integration of sensors and actuators on layer 1 with the target hardware platform

o Focus on EtherCat communication to layer 2.

The pre-integration step will bring software building blocks on layer two together in the
simulation environment (i.e. matlab simulink) and will show collaboration on the development
default hardware target. This enables the Model based designs as much as possible.

The target platform integration will bring the layer two building blocks to the two reference target
platforms. Finally the sensors and actuators on layer 1 will be integrated with the l-MECH
system.

6. I-MECH V&V definition for Building Blocks
BBs (and platforms) have a service oriented architecture where the already defined states
and behaviours can be explored and forced somehow. This is again needed for validation.
This is the case of FMI for Model Exchange (chapter 3.2.3 of specification). At least verification
can be done with the FMI compliance checker.
The l-MECH platform layer 2 must be addressed by BB10/BB11. Defined services (for instance
Fieldbus virtualization or scheduling) must be implemented and made available for control BBs.
It is not required that the complete BB10/BB11 is modeled as a MIL simulation, but it is
necessary, at least, a simple behaviour of this interface.

Validation refers to assess that the BB does what it is expected to do, what has been
written in the upper level requirements, that is, refers to behavioural aspects. From this point of
view, D4.2, D5.2 are valid (validated) requirements for BBs.
If further steps on validation are needed, for instance recording output and state for defined
input signals, that task can be also view as testing. In any case, that test or validation will be
done in the simulation platform.
If compatibility and interoperability of tests, input signal definition and scripts is required, the
preferred standard would be ASAM AE XIL Simulation Mode Access. But at the time of this

© 2018 ECSEL Joint Undertaking. - Print Date 27 FEB 2018 Page 24 of 34PUBLIC

Doc ID 18112301R05

X»ME6H
Stuurt tAt^i^oĄro^ic SobMixrt^

D6.1:
Test benchmarking and strategy

Doc Creation Date

Doc Revision

Doc Revision Date

Doc Status

27 MAR 2018

05

12 DEC 2018

Released

writing we have no evidence of compatibility with standard commercial tools like Simulink. In
that case this validation task should be made using programming scripts.

The proposal is that only MIL is mandatory, so that validation will be done in that mode.
Validation means that behavioural requirements are written. For example, having a BB that
implements a PI with anti-windup and saturation, these features must be validated.
For specific BBs, validation can be done also in SIL, PIL, HIL... As explained in the previous
chapter, the objectives are different in each case. For instance, PIL can find platform-specific
software defects (object code depends also on compiler) and potential problems related to
real-time execution of control algorithms and interrupt handling including jitter and resource
corruption. SIL, on the other side, can be a better tool to benchmark BB’s performance against
different models or model parameters using the final source code. But it seems it is not possible
to set these validations as mandatory. This could be left to BBs owners’ decision.

In what follows, and before describing it in detail, a mental model of the BB represents a
function relevant for a mechatronic platform that has an FMU file and can, then, be simulated in
MIL mode, what is mandatory. The FMU for Model Exchange has a state machine driven by “C”
function calls. This state machine should somehow maintained for deployment, at least when
code generation is done automatically. Some mapping between these calls and field bus
initialization phases is needed. Some configuration tasks are usually available only in some
phases (or states) and transitions are commanded in a documented way. Standards are
applicable to all these phases.
In the l-MECH methodology we should describe an abstraction for such phases in such a way
that initialization can be tied to other BB events (like integrator initialization). A different, maybe
easier approach, is defining a state machine for l-MECH where those initializations can be done.
An example of a simple BB will be provided as a guide to explore the mentioned concepts.

One possible set of initial architectural requirements regarding this model can be:

Requirements for Modularity and Composition
rq-D6.1-ARCH: a complex BB that is composed of inner BBs connected must comply with
l-MECH requirements and objectives. (Refer to FMI, FMU and related MA project : “System
Structure and Parameterization”)

Requirements for self-diagnosis
rq-D6.1 -ARCH .sd. 1
Every BB must have an interface which let injection and test points. This interface is proposed to
be adhered to ASAM.
rq-D6.1 -ARCH .sd .2

2018 ECSEL Joint Undertaking. - Print Date 27 FEB 2018 PUBLIC Page 25 of 34

Doc ID 18112301R05

X»ME6H
Stuurt tAt^i^oĄro^ic SobMixrt^

D6.1:
Test benchmarking and strategy

Doc Creation Date 27 MAR 2018

Doc Revision 05

Doc Revision Date 12 DEC 2018

Doc Status Released

Every BB must provide a set of services to evaluate if the requirements are met.

Requirements for self-reflection
rq-D6.1-ARCH.sr.1
Every BB must have at least an FMU file with the FMI for Model Exchange part filled.
rq-D6.1-ARCH.sr.2
l-MECH BBs must provide information on its function, behaviour, intended use...in the FMU xml
description file.
rq-D6.1-ARCH.sr.3
l-MECH BBs must implement an OPC UA server or provide information to access the inputs,
outputs, states and tunable parameters from a script.
rq-D6.1-ARCH.sr.4
For OPC UA, l-MECH BBs must define for deployment the companion standard that defines the
semantics of its variables.
rq-D6.1-ARCH.sr.5
BB owner will choose the companion standard for l-MECH BB semantines. Verification will test
that variables exist and can be accessed. The list of available companion standards can be
found in the following link:
https://opcfoundation.org/developer-tools/specifications-opc-ua-collaborations

Requirements for Interoperability
rq-D6.1-ARCH.io.1
l-MECH BBs must have a Functional Mockup as defined in FMI and possibly also Simulink
and/or S-Function implementation.
rq-D6.1-ARCH.io.2
At least MIL mode must be available for that BB in simulation platforms that can import FMUs.
This means that at least the Model Exchange part is available.
rq-D6.1-ARCH.io.3
At least code for a platform must be available.
rq-D6.1-ARCH.io.4
An l-MECH BB must have input, output, parameters and variable signals. The type of the
signals must conform to FMI specification 2.0.

© 2018 ECSEL Joint Undertaking. - Print Date 27 FEB 2018 PUBLIC Page 26 of 34

https://opcfoundation.org/developer-tools/specifications-opc-ua-collaborations

Doc ID 18112301R05

X»ME6H
Stuurt tAt^i^oĄro^ic SobMixrt^

D6.1:
Test benchmarking and strategy

Doc Creation Date

Doc Revision

Doc Revision Date

Doc Status

27 MAR 2018

05

12 DEC 2018

Released

7. I-MECH V&V for Software Building Blocks
Any l-MECH compatible Building Block must comply with the objectives of the l-MECH
architecture. These objectives are dealt with also in D2.4 for a reference platform, where also
FMI standard is mentioned as defined in WP6 meeting in Eindhoven. As this WP6 addresses
verification of BBs, a detailed example of how a BB could be implemented that complies with the
requirements will be helpful.
D4.1, Motion control requirements and specification (first iteration) defines specifications for a
control system in chapter 4. Moreover, discrete control is assumed in all of them, as defined
in chapter 2.8.

Those requirements are functional requirements. It is assumed that general architecture
requirements have been already verified (there is a FMU...)
One important point and requirement that must be validated is that any parameter can be
accessed for reading or configuring from layer 3 upwards with OPC UA or any other method
using programming scripts, and also written if it is a tunable parameter. See “Tuning” and
“Monitor” in the figure below:

FBedBackCantrcillerEjiarnpte_Tuning

FeedBackConlrolle rExample_lnput

FeedBackConţnolle rExa mple_Monilor

FeedBackCorUnolle rExa mple_Outpul

FůůdbackCúíilfollerExannplů

For these control requirements, something more specific must be written if it has to be validated.
Even if not validated in the same platform, this document is about methodology and
benchmarking, what means that something must be measured.
For every requirement the specific BB should specify target figures and method to test them and
how that BB improves state of the art. This takes part in the benchmarking expected.

Guideline for requirements of software BBs.
At this specific stage of Model Based Design, the software BBs must be validated at least in
MIL mode.

2018 ECSEL Joint Undertaking. - Print Date 27 FEB 2018 PUBLIC Page 27 of 34

Doc ID 18112301R05

X»ME6H
Stuurt tAt^i^oĄro^ic SobMixrt^

D6.1:
Test benchmarking and strategy

Doc Creation Date

Doc Revision

Doc Revision Date

Doc Status

27 MAR 2018

05

12 DEC 2018

Released

Model Verification

Functional requirements of BBs are gathered in a file of xml format.

All functional requirements must follow the naming convention:
rq-BBx-FUN.yyy.zz

where x is building block, yyy are text and zz number

The requirement verification method and obligation is also indicated.
T: test/validate
I: inspect/demonstrate
where a requirement can be:
R: required (must-have)
O: optional (nice-to-have)

A must-have functional requirement can be demoted to a nice-to-have verification requirement if
its principle is conceptually demonstrated elsewhere, according to the verification strategy.

For every functional requirement at least the following information must be provided:
<VerificationMode></VerificationMode> : MIL,SIL,PIL,HIL,Deployment
<ID></ID> : the name in the specified convention
<Description></Description> : text explaining the requirement.
<Reason></Reason> : why do we require this, intended purpose
<Verification></Verification> : How to verify/validate it
<lnputs></lnputs><Results></Results> (optional when a value different from pass/don’t pass is
expected or wanted, example, rejection of input noise > 30dB for a test input can be a true/false
condition, but in some cases a vector test and the expected output value is needed)
The same requirement can have more than one input if verified in MIL and HIL, for instance.
Hence, ID and Verification Mode fields are mandatory to uniquely identify a test.

This verification on the document can be done very easily via a scripting language.

Regarding verification results, the link between files is done by ID and VerificationMode..
The results file can be again be an xml file.

© 2018 ECSEL Joint Undertaking. - Print Date 27 FEB 2018 Page 28 of 34PUBLIC

Doc ID 18112301R05

X»ME6H
Stuurt tAt^i^oĄro^ic SobMixrt^

D6.1:
Test benchmarking and strategy

Doc Creation Date 27 MAR 2018

Doc Revision 05

Doc Revision Date 12 DEC 2018

Doc Status Released

For every requirement and mode, the following information must be provided.
<VerificationMode></VerificationMode> : MIL,SIL,PIL,HIL,Deployment
<ID></ID> : the name in the specified convention
<Result></Result> : success, error
<lnputs></lnputs><Outputs></Outputs><Values></Values>
To arrange numeric results of tests.

8. I-MECH V&V for Hardware Building Blocks
Explicitly the hardware BBs under development in l-MECH are as follows:
BB-1 Platform for Smart Sensors with Advanced Data Processing
BB-2 Real-time wireless sensors providing complementary feedback information
BB-3 Robust condition monitoring and prediction diagnostics
BB-4 High Speed Vision
BB-5 High performance servo amplifier design
BB-10 Development / selection of control specific multi-many core platform

There is a requirement to validate the l-MECH BBs as a minimum requirement in MIL mode. For
hardware BBs where the objective is to move directly to HIL test and validation this supersedes
the MIL validation requirement i.e. where HIL validation is conducted there is no requirement to
implement MIL validation. It is also possible to validate the hardware BB component as a rapid
prototype (RP). The test methodologies associated with MiL, HiL and RP test are outlined in
section 5 of this document.

Guideline for determining requirements to test under WP6 for Hardware BBs.
As stated previously an l-MECH compatible Building Block must adhere to the objectives of the
l-MECH architecture. These objectives are outlined in D2.4. The functional requirements for the
l-MECH hardware building block components will be validated against the requirements
developed in WP2 and further refined in WP3 in Tasks 3.1 and 3.2. System behaviour layer
integration and connectivity requirements and specification for each of the components are
sources in WP5 in Tasks 5.1 and 5.2. Where each requirement will be validated in the l-MECH
work program is illustrated in figure 4. As part of establishing which requirements will be tested
against in WP6 the following information will be compiled as part of Task 6.3:

• Each BB owner will examine the currently compiled list of functional requirements for
their respective BB.

• The BB owners will map the functional requirements to the generic l-MECH
requirements presented in D2.4 and in D6.1 under each of the following headings:

2018 ECSEL Joint Undertaking. - Print Date 27 FEB 2018 PUBLIC Page 29 of 34

Doc ID 18112301R05

X»ME6H
Stuurt tAt^i^oĄro^ic SobMixrt^

D6.1:
Test benchmarking and strategy

Doc Creation Date

Doc Revision

Doc Revision Date

Doc Status

27 MAR 2018

05

12 DEC 2018

Released

modelling test methodology XiL, interoperability, modularity, maintainability, self
reflection and self diagnostics.

• Information on how each identified requirement will be validated will be presented. The
proposal is that the requirement verification method and obligation is also indicated:

T: test/validate
I: inspect/demonstrate
where a requirement can be:
R: required (must-have)
O: optional (nice-to-have

• Where there is no associated requirement under a given heading, information on how
this condition can/will be addressed in future will be provided.

Guideline for validation test under WP6 for Hardware BBs.
The test specification template presented as Annex A in this document will be employed to
compile and disseminate the validation findings for each of the BB hardware components. As
per the template the test package specification will contain information on the following:

• A functional description of each test case shall include the test purpose, setup,
functional requirements and acceptance criteria.

• Information on test operation including user interface functionality, operation
modes/instructions and test log file descriptions.

• Listing of functions and failure modes to be tested and corresponding test cases.

Acknowledgement
This project has received funding from the Electronic Component Systems for European
Leadership Joint Undertaking under grant agreement No 737453. This Joint Undertaking
receives support from the European Union’s Horizon 2020 research and innovation program
and Netherlands, Czech Republic, Latvia, Spain, Greece, Portugal, Belgium, Italy, France,
Ireland.

© 2018 ECSEL Joint Undertaking. - Print Date 27 FEB 2018 Page 30 of 34PUBLIC

Doc ID 18112301R05

X»ME6H
Stuurt iAt^i^aĄro^ic SobMixrt^

D6.1:
Test benchmarking and strategy

Doc Creation Date

Doc Revision

Doc Revision Date

Doc Status

27 MAR 2018

05

12 DEC 2018

Released

Appendix A: l-MECH Building Block Test Documentation -
Template
This section describes the l-MECH Building Block Test Documentation that will be employed
as part of the verification and validation.

l-MECH Building Block Test Package Specification
l-MECH Building Block Test Package (to be developed before conducting validation/test)

Based upon the functional description, each test case shall be described specifying (where
applicable):

• Test purpose
• Test setup including overview of building block component hardware, software and

functions to be tested (hardware and software components, parts, serial numbers and
software versions)

• Specification or reference to l-MECH building block requirements and functional
requirements

• Expected results and acceptance criteria: test/validate/inspect/demonstrate

Description of l-MECH Building Block test operation, providing information on (where applicable):
• User interface functionality
• Operation modes of Building Block test simulator
• Operating instructions, and
• Presentation of trends and test log-files e.g. FMI compliance

Listing of functions and failure modes to be tested and corresponding test cases (where
applicable). Failures to be simulated can include but not limited to:

• Sensors or input devices failure modes (dropout, noise, calibration, errors, drift, bias,)
• Failure mode of actuators, drives, power system components
• Failure mode of electro-mechanical components
• Feedback from sensors on actuator failure modes
• Failure modes in computer networks

© 2018 ECSEL Joint Undertaking. - Print Date 27 FEB 2018 Page 31 of 34PUBLIC

Doc ID 18112301R05

X»ME6H
Stuurt iAt^i^aĄro^ic SobMixrt^

D6.1:
Test benchmarking and strategy

Doc Creation Date

Doc Revision

Doc Revision Date

Doc Status

27 MAR 2018

05

12 DEC 2018

Released

Other information to be included in test package documentation (where applicable):
• List of involved companies, name of contact person/title, contact information
• Test activity schedule
• Risk assessment of planned testing.

I-MECH Building Block Test Report Specification

l-MECH Building Block Test Report (to be developed following conducting validation/test)

Test reports to include the following information (where applicable):
• Listing of functions and failure modes test and corresponding test cases
• Recorded results of each test case.
• Description of each finding from functional requirements as observed in any test case

recorded with sufficient detail to be followed up further.
• Any functions incomplete or not available for testing shall be recorded as a finding.

Other information to be included in test report (where applicable):
• List of involved companies, name of contact person/title, contact information
• Link to trends and test log-files output from test cases

© 2018 ECSEL Joint Undertaking. - Print Date 27 FEB 2018 Page 32 of 34PUBLIC

Doc ID 18112301R05

X»ME6H
Stuurt tAt^i^oĄro^ic SobMixrt^

D6.1:
Test benchmarking and strategy

Doc Creation Date

Doc Revision

Doc Revision Date

Doc Status

27 MAR 2018

05

12 DEC 2018

Released

Appendix B: l-MECH Building Block Structure - Template
This section describes an example of a structure of a BB deliverable. This example serves
as a suggestion, not as a mandatory structure, since each BB can have unique
characteristics.
The main objective of this example is to provide some guidance how to distribute a BB to the
end users and to the V&V integrators/testers.

The example BB directory structure is shown in the figure below:

Contains all the deployed material of the BB
component. Includes in it scripts, interfaces, ...

Contains the source code of the BB
component. Can he C+-I-, Simulink, ...

Contains the compiled binary of the BB
component. Can he DLL,, lib. FMU, ...

Containsthe help forthe end user of the BB
component. Can be HTML.

Containsthe (supporting) scripts for the end
user of the BB component. Typically Layer 3
code. Can he Matlab, Python, Javascript, ...

Contains some exam pies forthe end user how
to use the BB component. Can he Simulink.

Contains some examples forthe end user how
to test the BB com ponent. Can he Sim u link.

Contains test material for the deve loper and
te st er/ integrat or. Will not he deployed to the
end user of the BB component.

Test cases forSW BBs.
Typically a MIL/SIL/PIL test mode I.

Test cases for HW BBs.
Includes a rapid prototype or HIL m odel setup
description.

2018 ECSEL Joint Undertaking. - Print Date 27 FEB 2018 PUBLIC Page 33 of 34

Doc ID 18112301R05

X»ME6H
Stuurt tAt^i^oĄro^ic SobMixrt^

D6.1:
Test benchmarking and strategy

Doc Creation Date

Doc Revision

Doc Revision Date

Doc Status

27 MAR 2018

05

12 DEC 2018

Released

Notes:
• The “end user” is the developer of the customized application (e.g. an l-MECH pilot).

The end user receives the BBs from the BB owners and constructs a controller with
them.
The “end customer” will be the final user of the controller received from the end user.

• A BB owner may deliver multiple (independent?) components, thus resulting in
multiple directories. Rename the <Component> directories accordingly.

• At least one of the <Source> or <Built> directories is mandatory, the other may be
omitted (e.g. when the source code is not deployed).

• The <Help> directory provides user instructions. E.g. available from the Help function
of a Simulink block (which displays a HTML page).

• The <Scripts> directory contains various scripts and functions that assist the end
user. The end user may deploy these scripts (possibly modified and/or compiled) to
the end customer. The BB owner could make a clear distinction between developer
scripts (for end user) and layer 3 scripts (for end customer).

• An open issue is how to provide the data dictionary for OPC UA and how to test a BB
with OPC UA.

• The <Examples> and <Test> directories are optional, and provide further models and
information to the end user about the correct usage of the BB component.

• The <ComponentTest> directory is mandatory, but won’t be delivered to the end user.
This directory is of interest to the BB owner (BB development testing) but also to the
WP6 tasks that V&V the BB components as described in this document

• ABB owner may provide multiple test cases (e.g. for the different use scenarios or for
the different BB10 platforms, CompSOC and x86 COTS). Rename the
<ComponentTest> directories accordingly.

• The <SwTest> directory is mandatory for SW BBs. It contains a MIL test model (with
supporting scripts) that V&V the BB requirements. It also contains a PIL test model
(with Layer 3 scripts) that demonstrate the deployment of the BB on both BB10/11
platforms.

• The <HwTest> directory is mandatory for HW BBs. This can be either a HIL test
model or a rapid prototype description, defined by the BB owner, to V&V the BB
requirements. Preferably using the BB10/11 platforms, but the issue is that the HAL
interface (particularly access to the EtherCAT master) is not defined yet.

Sioux CCM will provide a template model of a generic feedback controller (as suggested for
BB6) that complies to this template and provides more suggestions e.g. naming conventions.
This template is explained in presentation 18120601R01 located in the partner zone.

2018 ECSEL Joint Undertaking. - Print Date 27 FEB 2018 PUBLIC Page 34 of 34

