

 Doc ID 19110501R02

 Doc Creation Date dd 9 APRIL 2018

 Doc Revision 02

 Doc Revision Date 26 NOVEMBER 2019

 Doc Status Final

 Workpackage Deliverable ID

 WP5: System behaviour layer design and interfaces D5.5: System behaviour tools, data processing and interfaces

 Summary

 The System Behavior Layer addresses the necessary technologies to integrate lower I-MECH layers with state of
the art Manufacturing execution systems (MES systems), with special focus on smart functionality following the
Industry 4.0 paradigm. The I-MECH program focuses on adding smarter functions as predictive diagnostics and
automatic commissioning to new but also to existing machine control infrastructure. The different type of functions
are divided across I-MECH building blocks:

• BB3 Condition monitoring and predictive diagnostics of electrical drives
• BB6 Automatic commissioning of motion control systems.

The smart part of the building blocks with these diagnostics and automatic commissioning functions are active on
the System Behavior Layer. So these building blocks will impact the interfaces between the Control layer and the
System Behavior Layer. This document D5.5 addresses the usage of standardized interface for integration with and
data transfer to the System Behavior Layer. The D5.6 focuses on the functionality of the smart building blocks
themselves.

 Author Marc van Eert, Hans Kuppens, Luca Simon, Petr Blaha

 Keywords Configuration, deployment, platform, building block.

Coordinator Sioux CCM

Tel. 0031 (0)40.263.5000

E-Mail info@i-mech.eu

Internet www.i-mech.eu

Ref. Ares(2019)7340405 - 28/11/2019

mailto:info@i-mech.eu
http://www.i-mech.eu/

 Doc ID 19110501R02

 Doc Creation Date 09 April 2018

 Doc Revision 02

 Doc Revision Date 26 NOVEMBER 2019

 Doc Status Final

© 2019 ECSEL Joint Undertaking. – Print Date 00 XXX 0000 PUBLIC Page 2 of 39

Table of contents

Introduction 5

Scope 6

Mapping functions on system layers and interfaces 6

BB3 condition monitoring and predictive diagnostics of electrical drives 6

BB6 Automatic commissioning of motion control systems 7

Interoperability by standardised interfacing and data models 7

RAMI 4.0 7

OPC UA 8

OPC UA companion specification 9

Adaptation in the field 9

Green field applications 9

Brown field applications 9

using OPC UA in Green field and Brown field 9

The I-MECH infrastructure 10

Communication and information layers 11

Green field adaption 13

Brown field adaption 14

Building block 3 14

Communalities in information exchange 15

Condition indicator extraction 16

Predictive maintenance 16

Configuration and setup 17

Process flow control 18

Example 20

Building block 6 21

Communalities in information exchange 23

Interfacing with production systems 26

Pilot 1 (Sioux CCM) 26

System tools for top layer interfacing + data fusion 27

OPC UA service oriented architecture 29

OPC UA open source tooling 29

Pilot 2 (Nexperia) 32

Demonstrator 1 (J&J Vision Care) 33

BB3 Condition monitoring algorithm for Demonstrator 1 33

Production system integration Layer 3 36

Designing tools for data fusion from various types of sensors 37

 Doc ID 19110501R02

 Doc Creation Date 09 April 2018

 Doc Revision 02

 Doc Revision Date 26 NOVEMBER 2019

 Doc Status Final

© 2019 ECSEL Joint Undertaking. – Print Date 00 XXX 0000 PUBLIC Page 3 of 39

 Doc ID 19110501R02

 Doc Creation Date 09 April 2018

 Doc Revision 02

 Doc Revision Date 26 NOVEMBER 2019

 Doc Status Final

© 2019 ECSEL Joint Undertaking. – Print Date 00 XXX 0000 PUBLIC Page 4 of 39

Document Revision History

 Revision Status Date Author Description of changes IAL ID / Review ID

 R01 Draft 1-APRIL-18 EERT Initiate

 Draft 6-AUG-18 EERT Update with I-MECH status

 Draft OCT-19 BUT Added BB3

 Draft OCT-19 UNI Added BB6

 Draft NOV-19 Sioux Added pilot integration

Contributors
 Revision Affiliation Contributor Description of work

 R01 TNL Marc van Eert Setup and decomposition of document

 UNI Luca Simoni Building block 6

 BUT Bohumil Klíma, Luděk Buchta,

Martin Doseděl, Petr Blaha, Pavel

Václavek

Building block 3 requirements on information

exchange accompanied with an example.

 Sioux CCM Hans Kuppens Pilot 1 integration

 Nexperia Gijs van der Veen Pilot 2 integration

 R02 ITML George Bravos Data Fusion

 J&J Vistakon Séamus Hickey Demonstrator 1

Document control

 Status Draft Final

 Revision 01 02

Reviewer Name Role Selection

Bohumil Klima BUT X

George Bravos ITML X

File Locations
Via URL with a name that is equal to the document ID, you shall introduce a link to the location (either in Partner
Zone or CIRCABC)

 URL Filename Date

 dd-MMM-yyyy

Literature

 Ref Name Publisher Year

 [1] AxChange Python scripting interface. Proprietary

solution of SIOUX CCM

Sioux CCM 2018

 [2] Van der Veen, G. D2.4 General specification and

design of I-MECH reference platform. Deliverable of

I-MECH project.

I-MECH

October, 2018

https://drive.google.com/drive/folders/0B6ZxtcnW8nzFcVJWYVh5Zld4OEE?usp=sharing
https://drive.google.com/drive/folders/0B6ZxtcnW8nzFcVJWYVh5Zld4OEE?usp=sharing
https://circabc.europa.eu/faces/jsp/extension/wai/navigation/container.jsp?FormPrincipal:_idcl=FormPrincipal:left-menu-ig-link&FormPrincipal_SUBMIT=1&javax.faces.ViewState=Fdhz%2FRgtEqMdSn%2Bwlnn1X0Je9yHRvQ4TNblptsQwemsgrKlxoh79VNIzc3HrJejwzHAtaQW8Rxkl0N8ED%2BS5CkyxsF9WfZVrDgZ9vUa6vjbdkrjC%2Fy%2BxQMQKmzKtYFvLTDjY%2BUXbwy%2FpYqopzXyNbO5u3yi33goxwAQoag%3D%3D

 Doc ID 19110501R02

 Doc Creation Date 09 April 2018

 Doc Revision 02

 Doc Revision Date 26 NOVEMBER 2019

 Doc Status Final

© 2019 ECSEL Joint Undertaking. – Print Date 00 XXX 0000 PUBLIC Page 5 of 39

 [3] Seamus, H. D 5.2 System behavior layer integration

and connectivity requirements and specification (final

iteration). Deliverable of I-MECH project.

I-MECH November,

2018.

 [4] OPC Unified Architecture for ISA-95 Common Object

Model Companion Specification Release 1.00

OPC UA Foundation October, 2013

 [5]

PC 30070-1 OPC UA for MTConnect Part 1: Device

Model, Release 2.0

MTConnect Institute June 5, 2019

 [6] OPC UA Robotics Companion Specification, part 1

(draft version 1.0)

VDMA June 2018

 [7] OPC UA Vision Companion Specification, part 1,

(release candidate Version 1.0)

VDMA June 2018

 [8] Self-Configuration Method for Plug-and-Play smart

Transducer systems

TUe / Marc Solsona Ginesta July 2018

 [9] Aggregating OPC UA Server for Generic Information

Integration

Markus Johansson November,

2017

 [10] System Bahaviour design and interfaces final report. I-MECH November,

2019

Abbreviations & Definitions

 Abbreviation Description

 BB Building block

 COM Component object model

 DFB Data Fusion Bus

 ERP Enterprise Resource Planning

 EPL Engineering Programming Language

 gRPC Remote procedure call, an open source RPC framework originating from Google

 GUI Graphical user interface

 KPI Key performance indicator

 LSM Linear Synchronous Motor

 MES Manufacturing execution system

 OPC UA Open Platform Communication - Universal Architecture

 OPC DA Open Platform Communication – Data Access

 OPC HDA Open Platform Communication – Historical Data Access

 OPC AE Open Platform Communication – Alarms and Events

 PCA principal components analysis

 RAMI Reference Architectural Model for Industry 4.0

 SCADA supervisory control and data acquisition

 SOA Service oriented architecture

 Definition Description

1 Introduction
Work package 5 in the I-MECH project considers the System Behaviour Layer, within I-MECH also mentioned as
Layer 3. The I-MECH program focuses on adding smarter functions as predictive diagnostics and automatic
commissioning to new but also to existing machine control infrastructure. The different type of functions are divided
across I-MECH building blocks:
• BB3 condition monitoring and predictive diagnostics of electrical drives
• BB6 Automatic commissioning of motion control systems.

 Doc ID 19110501R02

 Doc Creation Date 09 April 2018

 Doc Revision 02

 Doc Revision Date 26 NOVEMBER 2019

 Doc Status Final

© 2019 ECSEL Joint Undertaking. – Print Date 00 XXX 0000 PUBLIC Page 6 of 39

The smart part of the building blocks providing these diagnostics and automatic commissioning functions are active
on the System Behavior Layer (layer 3). So these building blocks will impact the interfaces between the control layer
and the System Behavior Layer. This document D5.5 addresses the usage of standardized interface for integration
with and data transfer to the System Behavior Layer. The D5.6 focuses on the functionality of the building blocks
themselves.

Relevant deliverables for the System behaviour layer from other work packages are:
● D2.4 General specification and design of I-MECH reference platform
● D5.2 System behaviour layer integration and connectivity requirements and specification
Together, these document give the scope for the tooling and interfaces needed on the System Behaviour Layer.

1.1 Scope
The focus of this document is on the communication between the centralised control layer (layer 2) and System
Behaviour Layer. The focus of I- MECH concentrates on the functional building block on layer 1 and layer 2. They
form the core of the plug and produce infrastructure. However without the system behaviour layer 3 the functionality
cannot be fully operated. This document describes the functionality and interfaces needed to operate the building
blocks on layer 2 and layer 1 from the perspective of layer 3.

To enable the use of building blocks outside I-MECH, it is important to look at standardisation of interfaces. Chapter
2 elaborates on the important standards to take into account for the I-MECH interfaces to the higher system layers.

Chapter 3 recapitulates the I-MECH architecture as far as relevant for the system behaviour layer. Chapter 4 and 5
describes the configuration and data interfaces as presented by the building blocks 3 and 6. The last chapter 6,
reports on the integration of the smart building blocks with production systems.

1.2 Mapping functions on system layers and interfaces
Within I-MECH, the aim is to define generic building blocks for motion control, that are reusable. The building blocks
can be made more generic when the different settings, needed by different pilots and demonstrators, are abstracted
and parameterized. By controlling the parameters from the system behaviour layer, the building block parts on the
control layer become reusable across the pilots and demonstrators. As a consequence the interface between the
layers must support the setting and readback of the parameters. Within I-MECH this is especially important for the
smart modules BB3 and BB6. In work package 5, these two building blocks formed the blueprint for the mapping of
functionality on the layers and also for the needed data interface between layer 2 and layer 3. Paragraph 1.3 and 1.4
describe the context for these building blocks.

1.3 BB3 condition monitoring and predictive diagnostics of electrical
drives

The importance of condition monitoring and predictive maintenance in motion systems is growing as number of
motion systems and their complexity (number of axes, performance parameters) increase with extending the
automation of huge range of human activities and manufacturing processes. Using robots and multi-axis
manipulators becomes a common matter in the human life. The effective monitoring and proper function watching of
the automation systems become insufficient in most of these situations. Precise fault detection is required at least to
help service personnel to replace faulty units. However, every single fault leads to outage of the whole complex
system e.g. production line, power plant, etc. A prevention of faults and maintenance strategies are much more
beneficial for system reliability and for operational and service costs. There are few typical strategies how to prevent
unexpected system outages:

● preventive maintenance,
● fault tolerant systems,
● predictive maintenance.

 Doc ID 19110501R02

 Doc Creation Date 09 April 2018

 Doc Revision 02

 Doc Revision Date 26 NOVEMBER 2019

 Doc Status Final

© 2019 ECSEL Joint Undertaking. – Print Date 00 XXX 0000 PUBLIC Page 7 of 39

These strategies can be combined to reach reasonable reliability of the whole system for reasonable cost. From the
typical strategies the most required approach is the predictive maintenance. The BB3 is a building block aiming to
pass maintenance actions under this approach as much as possible.

1.4 BB6 Automatic commissioning of motion control systems
One of the difficulties that technicians have to face during the commissioning of a mechatronic system is related to
the tuning of the motion controller parameters. In fact, each mechatronic system is different from the others and
therefore, to obtain the required performance, its controller has to be properly tuned by considering its own
peculiarities.
In this framework, a methodology that is able to automatically tune the controller parameters of a generic
mechatronic system can reduce the commissioning time and, furthermore, it can help to obtain the required
performance by taking into account the specific behaviour of the system. This generally yields an increment of the
quality of the overall production and, at the same time, a significant reduction of the costs and for this reason such a
kind of functionality is more and more required for industrial drives (see D8.2 for the exploitation strategies related to
this issue).
The most used controller in mechatronics is made by a cascade architecture (see Deliverable 4.1). In the specific
case of this deliverable, that is strictly linked to the BB6, a methodology that is able to tune the velocity and position
control loops parameters will improve the performance and it will decrease the commissioning time of mechatronic
systems that use standard control architectures.
BB6 is related to the Scientific and Technological Development Objective ST4 of the I-MECH project, which consists
in the development of specific condition monitoring functionalities for the system behaviour layer. Indeed, in addition
to simplify the commissioning phase of the system at the beginning of its operations, when the system behaviour
layer recognizes that the performance of the motion control system has degraded (because, for example, there is a
change in the dynamics of the system), the automatic tuning procedure can be exploited in order to recover the
original performance and to satisfy the control requirements.

2 Interoperability by standardised interfacing and data
models

When industry 4.0 talks about ‘plug and produce’ and ‘machine to machine communication infrastructure’, the
questions how to standardise the communication and how to standardise information exchange become very
important to get answered. Standardising is only meaningful as the environment also can use these standardised
interfaces. The environment typically are other machines on the work floor on one side and the higher factory
process layers on the other side. A standardised 3 layer model RAMI 4.0 describes a generalised Architecture.

2.1 RAMI 4.0
RAMI 4.0 stands for ‘Reference Architectural Model for Industry 4.0’. RAMI is a three-dimensional layer model that
compares the life cycles of products, factories, machinery with the hierarchy levels of Industry 4.0 and the data
aggregation layers needed to monitor and control the infrastructure.
It provides a reference to standards for industrial automation using three main axis:
● Life Cycle Value stream: from development till production;
● Hierarchy levels: The levels of connected machine control;
● Layers: The process or work flow in a factory from asset till business;

 Doc ID 19110501R02

 Doc Creation Date 09 April 2018

 Doc Revision 02

 Doc Revision Date 26 NOVEMBER 2019

 Doc Status Final

© 2019 ECSEL Joint Undertaking. – Print Date 00 XXX 0000 PUBLIC Page 8 of 39

Figure 1: RAMI framework, source Platform Industry 4.0

In I-MECH the ‘communication layer’ and the ‘information layer’ in the RAMI 4.0 are important, because the
determine the interconnectivity to the production pyramid.

The industry is standardising on OPC UA for communication and on standardised data models for information
exchange. The drafting and acceptance for communication specification standards drafting and acceptance for data
models is a time consuming process which is still ongoing.

2.2 OPC UA
OPC UA stands for Open Platform Communication Unified Architecture. It defines a platform independent service-
oriented architecture that integrates all the functionality of the individual COM OPC Classic specifications into one
extensible framework.

The OPC UA standard describes how to communicate in a standardised way with mechanisms like client-server,
publish-subscribe, events and methods (communication layer). It does not prescribe which data to communicate
(information layer). This is part of the data model and can be part of an industry standard or vendor information
model which is defined out of the scope of the OPC UA base. Industry standards are defined in Companion
specifications.

Figure 2: The separation of communication and information exchange in the OPC Unified Architecture

 Doc ID 19110501R02

 Doc Creation Date 09 April 2018

 Doc Revision 02

 Doc Revision Date 26 NOVEMBER 2019

 Doc Status Final

© 2019 ECSEL Joint Undertaking. – Print Date 00 XXX 0000 PUBLIC Page 9 of 39

2.3 OPC UA companion specification
Standardisation of the OPC UA data models for industry is ongoing. Groups of vendors and branches are proposing
draft companion specifications. Special importance for machine builders are the companion specifications drafted by
the VDMA, the German Mechanical Engineering Industry Association. (See Lit Ref [6] and Lit Ref [7])

2.4 Adaptation in the field
OPC-UA is based on distributing an object model of the data living in a device or building block (the information)
through standardised interfaces. To use the data on the other side (Layer 3), the object model needs to be known
there too. This comes down to the questions:
● Which information is needed where in the system?
● Which object/data models can provide this information distribution?

2.4.1 Green field applications
A green field application is one that is not yet made or is in the very early stages of development. For this type of
applications new ways of working and new interfaces can easily be chosen. However the number of green field
applications in the industry is very limited. Most of the time systems are built to last and be maintained for 15 years
or even longer.

2.4.2 Brown field applications
A brown field application is an existing application. Most of the time existing applications need to be maintained. Part
of the maintenance might be an upgraded to newly introduced standards. To be able to support upgrading, a
migration path is needed. This is especially important for the interfacing to the brown field applications.

2.5 using OPC UA in Green field and Brown field
Most machines in industrial environments have a long life span of more than 15 years. So adding functionality is not
simply replacing an old machine with a new one, denoted as a green field introduction (new machine introduction).
Most of the times it means upgrading a machine, making adaptations to an existing machine (brown field). This can
be done in the production chain or even in the field as a field upgrade.

Figure 3: greenfield versus brownfield communication stack

OPC UA can support brown field upgrades as long as a conversion layer can be supported as is shown in figure 3.
The easiest way is to support the conversion application in the system behaviour layer. The layers 1 and 2 of the
machines can than be left unchanged. An OPC UA server is build on top of a brown field client mapping the data

 Doc ID 19110501R02

 Doc Creation Date 09 April 2018

 Doc Revision 02

 Doc Revision Date 26 NOVEMBER 2019

 Doc Status Final

© 2019 ECSEL Joint Undertaking. – Print Date 00 XXX 0000 PUBLIC Page 10 of 39

model of the brown field machine to the data structures as used in the OPC UA server. For the green field
applications the OPC UA server can directly be run on layer 2.

3 The I-MECH infrastructure
The I-MECH infrastructure is bases on a modular design with building blocks with a specific set of functions. The
building blocks are structured in a layered model. Most machines will cover three layers. Layer one ‘the
instrumentation layer’ contains the low level functions like sensing and actuation, the layer two contains higher level
functions for instantaneous control and operation of the machine. Layer thee contains more advanced functions for
planning and scheduling giving flexibility to the machine. This layer also forms the access layer from layer 4, with
typically ERP, MES or SCADA infrastructure.

Figure 4: I-MECH architecture, featuring 3 layers, and showing context with Industry 4.0 with primary research focus highlighted.

The mapping of functionality on the layers in example can be described as follows.

Focused on motion control functionality:
The highest, most abstract, Layer 3 (System Behaviour Layer), defines a system behaviour in terms of the desired
motion trajectory. It addresses the fundamental demands which originate from the management layers of production
systems. In addition, functionality such as user interaction, sequence and/or exception management can also be
found in Layer 3.

Layer 2 goes slightly deeper, and represents the algorithmic to manipulate the physical environment via the
instrumentation layer (Layer 1). It can be implemented in either a decentralized or a centralized way, depending on
the requirements at the system level.

Focused on predictive maintenance:
The highest, most abstract, Layer 3 (System Behaviour Layer), defines a system in terms of expected operation and
deviations thereof enabling the system to draw conclusions on maintenance expectancy.
Layer 2 goes slightly deeper and represents the algorithms to process, accumulate, filter and extract data from the
instrumentation layer (Layer 1) in a way the extracted information from the data becomes useful in layer 3.

A approach with functional building blocks forms the fundament of a plug and produce infrastructure. It is combined
with a Service Oriented Architecture (SOA) to achieve a high degree of configurability, scalability and interoperability
of the individual components, while maintaining the reliability, safety, certify ability and time-to-market benefits of off
the shelf solutions.

 Doc ID 19110501R02

 Doc Creation Date 09 April 2018

 Doc Revision 02

 Doc Revision Date 26 NOVEMBER 2019

 Doc Status Final

© 2019 ECSEL Joint Undertaking. – Print Date 00 XXX 0000 PUBLIC Page 11 of 39

Using a modular design forces to use interconnects between the functional blocks, otherwise no information
exchange is possible. For real time control between layer 1 and 2 the interconnects are typically made with real-time
protocols on field busses. The less time critical control between layer 2 and layer 3 can be performed with non-real-
time interfaces on top of Ethernet. Open protocols and interfaces are needed for plug and produce infrastructure.
Although multiple open standards exists, the I-MECH building blocks will by default be based in EtherCat between
layer 1 and 2 and on OPC-UA for communication between layer 2 and layer 3. Note that this does not exclude other
standards. Most open standards support bridging information between each other.

3.1 Communication and information layers
The functional basis of an I-MECH system is process control. Modules become smart modules when they are “self-
descriptive”. At the factory level, an I-MECH system provides information and advanced functionality in the four main
pillars: ‘Configuration’, ‘Process flow control’, ‘KPI and process monitoring’, and ‘Predictive maintenance’ as shown in
figure 5.

Figure 5: Functional and informational view of an I-MECH system

Configuration
Configuration and setup of a machine are needed to let the machine function properly. The efficiency of the
supportive functions in the system, help to reduce the time needed for an operator to spend on the machine to keep
it operational.
Auto-configure and auto-calibrate are functions that become important as part of a fully automated system setup.
Most existing systems do not (yet) have support for this kind of functionality. Building block 6 adresses the calibration
of the controller given the machine mechanics using a auto tuning of control loop.

To enable a more automated configuration, calibration and system setup, system specifics must be known at layer 3.
This can be realised by using the right defaults in the programming, but can be realised more generic when the
modules support a form of reflection. Telling the layer 3 what kind of module needs to be configured by smart module
support functions like:

● datasheet exchange,
● automatic part reflection.

With this information the features can be realised like:

● auto-calibration,

 Doc ID 19110501R02

 Doc Creation Date 09 April 2018

 Doc Revision 02

 Doc Revision Date 26 NOVEMBER 2019

 Doc Status Final

© 2019 ECSEL Joint Undertaking. – Print Date 00 XXX 0000 PUBLIC Page 12 of 39

● auto-configuration,
● auto-tuning.

Process flow control
The process flow control is required in machine control to operate a system. Data streams involved are related to:

● Operational control (real time behaviour),
● Real time control loop data.

All of the motion control solutions have a form of process flow control on board.

KPI process monitoring
The process monitoring is often used to feed data to the higher system layers like ERP, MES and SCADA systems.
The focus is mainly process control related information.

● Process monitoring
o KPI’s
o process analytics

Predictive maintenance
Maintenance of a machine is important to keep the system operational. The maintenance efficiency depends on the
maintenance predictive support a machine can provide. Without this information, only reactive or time based
maintenance is possible. Building block 3 addresses this functionality by adding predictive maintenance functionality
to the system.

● predictive maintenance
o anomaly and failure prediction

When building motion control systems it is important to realise that the data needed for these different functions like
predictive maintenance and auto calibration have different time scales than the normal process control flow. This
enables to handle these data streams in a non real time fashion.

Information flows:

● Configuration (relative static)
● Predictive maintenance (long time scales)

Figure 6 makes this explicit by showing the different functions on the different layers in the system. Looking in this
way to the system also simplifies the mapping of different functions to different OPC UA companion specifications
typically defined for configuration or for predictive maintenance.

 Doc ID 19110501R02

 Doc Creation Date 09 April 2018

 Doc Revision 02

 Doc Revision Date 26 NOVEMBER 2019

 Doc Status Final

© 2019 ECSEL Joint Undertaking. – Print Date 00 XXX 0000 PUBLIC Page 13 of 39

Figure 6: Green field architecture with different types of data flows across the system layers

3.2 Green field adaption
The interface between the control layer (layer 2) and the behaviour layer (layer 3) will make use of an Ethernet
interface.
The behaviour layer must be able to connect several client applications to a server running on the motion control
layer. Examples of such clients may be:

● A graphical user interface (GUI) which enables user interaction with the devices connected to the I-MECH
platform,

● The engineering programming environment, which allows scripting of motion platform tasks, data acquisition,
signal processing, calibration and tuning,

● An OPC UA server, performing translation of OPC UA instructions to layer 2 instructions and vice versa,
● Access to non-realtime functions of control building blocks (BB6 - BB9), such as tuning, calibration,

configuration, monitoring, diagnostics and signal tracing,
● Access to non-realtime functions of layer 1 building blocks (BB1, BB2, BB5) such as configuration, tuning,

firmware update, monitoring, diagnostics and signal tracing

 Doc ID 19110501R02

 Doc Creation Date 09 April 2018

 Doc Revision 02

 Doc Revision Date 26 NOVEMBER 2019

 Doc Status Final

© 2019 ECSEL Joint Undertaking. – Print Date 00 XXX 0000 PUBLIC Page 14 of 39

Figure 7: I-MECH Greenfield communication between the system layers

3.3 Brown field adaption
The interface between the control layer (layer 2) and the behaviour layer (layer 3) will make use of an Ethernet
interface. Depending on the green field or the brown field case the protocol may be OPC UA or will be an existing
proprietary protocol. In that case, an OPC UA server may run a level higher (level 3) to provide a standardised
interface for communication with the factory automation layer (ERP, MES, SCADA).

The behaviour layer must be able to connect several client applications (simultaneously) to a server running on the
motion control layer. Examples of such clients may be:
• A graphical user interface (GUI) which enables user interaction with the devices connected to the I-MECH platform,
• The engineering programming environment, which allows scripting of motion platform tasks, data acquisition, signal
processing, calibration and tuning,

An OPC UA server, performing translation of OPC UA instructions to layer 2 instructions and vice versa,
• Access to non-realtime functions of control building blocks (BB6 - BB9), such as tuning, calibration,
configuration, monitoring, diagnostics and signal tracing,
• Access to non-realtime functions of layer 1 building blocks (BB1, BB2, BB5) such as configuration, tuning,
firmware update, monitoring, diagnostics and signal tracing

4 Building block 3
Let’s start with an example with I-MECH building block 3 on condition monitoring and predictive maintenance. This
building block can be decomposed in different functional building blocks which together deliver the predictive
maintenance functionality. Each sub module of building block 3 can be positioned in a different layer. (see figure 8).
First of all the functionality can only be provided with additional sensing. The state of the machine must be monitored
with accelerometers or vibration sensors (BB3a) at layer 1. The data coming from these sensors must be provider to

 Doc ID 19110501R02

 Doc Creation Date 09 April 2018

 Doc Revision 02

 Doc Revision Date 26 NOVEMBER 2019

 Doc Status Final

© 2019 ECSEL Joint Undertaking. – Print Date 00 XXX 0000 PUBLIC Page 15 of 39

processing building blocks to do the real time analytic processing. Results of this processing need to be shared with
building blocks on level 3.

For each building block this mapping can be made. The mapping results in the information exchange that is needed
between the layers.

4.1 Communalities in information exchange
The state of the electrical drive can be monitored with temperature sensors and current and voltage measurements
which are normally available in the inverter controller. The measurement can be extended with accelerometers or
vibration sensors data. All the sensing is realized in (BB3a) at Layer 1. The data coming from these sensors must be
processed in real time analytic processing. Results of this processing need to be shared with sub-components on
Layer 2 and/or 3.

Figure 8: BB3 mapping in the I-MECH mechatronic system structure.

Similar mapping exists also for other building blocks. The mapping results in the information exchange that is needed
between the layers.

Figure 9: Condition monitoring and predictive maintenance flowchart.

Condition monitoring and predictive maintenance flow-chart contains set of successive tasks as it can be seen in
Figure 9. These tasks of the BB3 can be divided into two groups as they are described in following sections.

 Doc ID 19110501R02

 Doc Creation Date 09 April 2018

 Doc Revision 02

 Doc Revision Date 26 NOVEMBER 2019

 Doc Status Final

© 2019 ECSEL Joint Undertaking. – Print Date 00 XXX 0000 PUBLIC Page 16 of 39

4.2 Condition indicator extraction
Condition indicator extraction tasks serve for monitoring of individual systems and for providing data corresponding
to the system's behaviour deterioration or wear of some specific parts of the system. Triggers, Enable blocks and
Condition Indicators are represented by functions/BB3 components in figure BB3-2. Their positioning in the I-MECH
mechatronic system structure (see figure 8) is assumed at a place of BB3-a and BB3b in cases of using online
monitoring of process data in Layer 1 and/or using BB3-a smart sensors. The alternative placing of these
functionalities can be done at a position of BB3d in the case when the process data is transferred from Layer 1 to
Layer 3 transparently and recorded in Layer 3 for the offline analysis (Pilot 5). Another possibility is to calculate the
indicator in Layer 2. In this case, the process data is transferred from Layer 1 to Layer 2. The calculated condition
indicator is transferred and recorded in Layer 3. Simulink is used as a primary development tool for components
situated in (BB3-f).

Figure 10: Condition monitoring and predictive maintenance flowchart.

Condition indicators calculation is assumed under a specific condition (action) of the system (e. g. the system
running at defined speed and defined load for a defined period, speed change from value1 to value2 at defined
acceleration, …). A set of triggers can be used for the detection of the specific condition occurrence triggers and
output enables, condition indicator calculation and monitoring. The ENABLE signal detects the beginning of the
monitored action and enables condition indicator calculation and stays high when the monitored action stays in
proper boundaries. ENABLE signals fall to low state in case of exceeding the monitored action boundaries. The
condition indicator provides its output for communication to Layer 3 and for its record into the history file when it is
successfully calculated.
The condition indicator block calculates the CI value if the ENABLE signal from the trigger block is active. According
to the defined period parameter (from Layer 3), it sends the CI value over the communication bus to Layer 3. The
period parameter can be set for different CIs within different limits during system operation.

4.3 Predictive maintenance
Predictive maintenance tasks – Condition indicator values are recorded in files as it will be described later. Predictive
maintenance functionality represents a set of tasks of processing the condition indicators realized on the recorded
data (BB3-e). Individual tasks are data recording, data reduction and Remaining Useful Life estimation. All these
functionalities are implemented into one state machine (executable program, the script running under MATLAB
runtime). They are positioned in I-MECH mechatronic system structure in (BB3-d). MATLAB serves as a main
development tool for predictive maintenance components running in (BB3-f).

 Doc ID 19110501R02

 Doc Creation Date 09 April 2018

 Doc Revision 02

 Doc Revision Date 26 NOVEMBER 2019

 Doc Status Final

© 2019 ECSEL Joint Undertaking. – Print Date 00 XXX 0000 PUBLIC Page 17 of 39

Figure 11: (BB3-1a) Condition monitoring and Predictive maintenance functionalities decomposition into I-MECH layers.

4.4 Configuration and setup

System definitions
A configurable set of various BB3 components can be used in a mechatronic system for condition monitoring and
predictive maintenance. A condition indicator function, data records file structure and set of parameters represent a
single condition indicator. The used trigger is implementation-dependent and defines conditions under which
condition indicator is calculated. This set of definitions provides the functionality to store data history. RUL estimation
and failure prediction can be done on the stored data. In the following, we define the required system data structures.

● BB3 data path – defines a global path in the file system to BB3 data structure. It is a top-level directory in the
figure BB3-3. The internal directory and file structure are defined below. This path has to be known globally.
Other definitions will be available in the internal definition file (BB3 definitions).

● BB3 library path – globally defined path in the I-MECH platform to set of components.

Definition above are expected like a common definition under I-MECH platform.

 Doc ID 19110501R02

 Doc Creation Date 09 April 2018

 Doc Revision 02

 Doc Revision Date 26 NOVEMBER 2019

 Doc Status Final

© 2019 ECSEL Joint Undertaking. – Print Date 00 XXX 0000 PUBLIC Page 18 of 39

4.5 Process flow control

BB3 definitions

● Component types definition – defines types of the monitoring functions available in the I-MECH platform
library.

o Component type – ID of a component available in the BB3 components library (e.g. I2t_condition
indicator, parks_pattern_indicator, trigger_const, trigger_power_on, ….)

o Inputs structure (trigger_input, process_variable,)
{
data_type Input_name_1
…
data_type Input_name_n
}

o Outputs structure (CI value, warning, fault, trigger_output)
{
data_type Output_name_1
…
data_type Output_name_n
}

o Parameters structure (Parameters, threshold, limit)
{
data_type Parameter_name_1
…
data_type Parameter_name_n
}

o Data record structure (definition of the single record of the data in record and overview files)
{
Datenum timestamp
data_type Record_item _1
…
data_type Record_item _n
}

● Condition indicator definition – defines a set of the monitored functions used in the mechatronic system.
Each used component represents a record in ‘system_description’ file

o Condition indicator ID – unique ID in the system individually assigned by the system. It links received
data from condition indicator in Layer 1 with proper record directory in Layer 3.

o Component type – defines condition indicator type ID in BB3 components library.
o Node address – serves for identification which node is monitored.
o User description – allows the user to add his own additional information.

● Time stamp – MATLAB ’datenum’ time format is used.
● Service_record

o Node ID
o Time stamp
o FRU ID (Field Replaceable Unit ID)
o User description

● Data exchange format for CI. Data communication between Layers 1 and 3 is considered primary as an

asynchronous, because of the ratio of the communication period and control and diagnostics loop period.
The communication frequency is much higher than the frequency of the control/diagnostic loops. It is also
not mandatory to transfer the resulting CIs in the fixed time intervals, what is ensured by the synchronous
type of communication. If it is necessary to use the synchronous communication as a standard in I-MECH
topology, it is in fact also possible, but not a must. In this chapter, the communication is shown as a

 Doc ID 19110501R02

 Doc Creation Date 09 April 2018

 Doc Revision 02

 Doc Revision Date 26 NOVEMBER 2019

 Doc Status Final

© 2019 ECSEL Joint Undertaking. – Print Date 00 XXX 0000 PUBLIC Page 19 of 39

transparent from the Layer 2 point of view, but there will always be present any device in Layer 2. Its function
will be at least as a translator of the EtherCAT bus (from/to Layer 1) and OPC UA (to/from Layer 3). It is also
possible in some cases to use the specialized device at Layer 2 serving as the CI processing or calculating
node.
A message format is defined below:

o CI_ID – links condition indicator data to record directory,
o Data record structure of a BB3 component.

Note: Time stamp is not necessary to be communicated. It can be provided based on L3 system time at the
data reception.

● Process data exchange format and record structure. It is not defined in BB3. It depends on implementation in

Layer 1 for individual devices and application. Usually the data will be transferred as data structure or array
located in a transferred buffer. The preferred file type in Layer 3 is *.mat file. It simplifies the analysis in
MATLAB and does not limit the data processing to this tool. The data can be converted to/read from *.mat
file using e.g. Python.

● Data directory structure defines how the condition monitoring data is organised in the Layer 3 filesystem.

Figure 12: (BB3-3) Data directory structure in I-MECH Layer 3.

● CI_ID directory is dedicated directory for condition indicators history records.
● nodeID directory is a directory used for saving process data in case of offline computed condition indicators

in L3 (Pilot 5).
● System_description.mat file contains a list of condition indicators and other components used in all nodes of

the mechatronics system.
● Service_records.mat contains history of service records defined above.

 Doc ID 19110501R02

 Doc Creation Date 09 April 2018

 Doc Revision 02

 Doc Revision Date 26 NOVEMBER 2019

 Doc Status Final

© 2019 ECSEL Joint Undertaking. – Print Date 00 XXX 0000 PUBLIC Page 20 of 39

● Overview.mat file contains the history and key information about each record of the condition indicator that is
saved in the folder records. The structure of the overview.mat file contains the exact record identifier
(filename – description construction of the unique record filename will be described below), a time stamp
related to the indicator, the key indicator value or values depending on the type of the indicator and record
status information. The key value can indicate the average value of the condition indicator (e.g. average
position error) over the time period of the record. It can also contain the maximum and minimum value of the
condition indicator or information about exceeding the defined thresholds. This information indicates the
significance of the record for predictive maintenance analysis by the user or the parent system. The record
status information item informs the user or superior system about changes made to the records (archived,
data reduction, deleted).

4.6 Example
The requirements on communication flow will be demonstrated on an example of I2t block.

Figure 13: An example of configuration of trigger and condition indicator.

An example of trigger and condition indicator configuration is shown In the figure 13. The enable block monitors
desired speed signal and provides enable signal to the condition indicator. The trigger detects acceleration from start
value to end value. Repeating acceleration of the drive can be detected in such way. The i2t condition indicator
compute i2t value based on two phase currents of the drive for the repeating action.
Placement of the components is supposed in L1. Both blocks require parameter setting when system is initialized.
Inputs of these blocks are connected to process variables (desired speed to trigger, phase currents to condition
indicator). The condition indicator provides outputs which needs to be communicated to L3 for recording. Condition
indicator ID is one of the outputs which is necessary to add to the communication message. The output value is
available asynchronously to the control loops periods. WR signal is generated after successful output calculation and
update. The positive edge of WR indicates a requirement to transfer the indicator output and ID to the transmit buffer
of the communication.

Table 2: (BB3-1) Signals and parameters used in example

Signal / Default data type Description

 Doc ID 19110501R02

 Doc Creation Date 09 April 2018

 Doc Revision 02

 Doc Revision Date 26 NOVEMBER 2019

 Doc Status Final

© 2019 ECSEL Joint Undertaking. – Print Date 00 XXX 0000 PUBLIC Page 21 of 39

Parameter

I2t condition indicator – input signals

i_a double Phase A current signal of the drive

I_b double Phase B current signal of the drive

Enable boolean Signal enabling condition indicator calculation.

Enable must persist high for the time defined by parameter ‘Period’ to

calculate valid output.

I2t condition indicator – output signals

WR boolean Positive edge of “Write” the signal indicates valid data at condition indicator

output. The output data have to be transferred to transmit buffer to be sent to

layer 3

ID long Unique identifier of the condition indicator object. Links L1 indicator and L3

file folder with CI history records

I2t double Output value of the condition indicator

I2t condition indicator – parameters

I_nom double Nominal current amplitude value for i2t algorithm

T_s double Calculation cycle length

Period double Monitoring period of condition indicator acquisition

CI_ID long Unique ID of component instance in mechatronic system

FromToRamp Trigger – input signals

In double Triggering process variable (drive desired speed is supposed)

FromToRamp Trigger – output signals

Enable boolean Enable output for condition indicator calculation

FromToRamp Trigger – parameters

Par_StartValMin double Bottom limit of detection zone for start value of the input

Par_StartValMax double Upper limit of detection zone for start value of the input

Par_StartValDuration double Period of desired persisting of input signal in detection zone

Par_SlopeMin double Bottom limit of slope zone of input signal

Par_SlopeMax double Upper limit of slope zone of input signal

Par_EndValMin double Bottom limit of detection zone of final value of input

Par_EndValMax double Upper limit of detection zone of final value of input

5 Building block 6
Building Block 6 (self-commissioning of velocity and position control loops), can be decomposed in 4 functional
blocks located in layer 2 and layer 3 of the I-MECH structure see figure 14.

 Doc ID 19110501R02

 Doc Creation Date 09 April 2018

 Doc Revision 02

 Doc Revision Date 26 NOVEMBER 2019

 Doc Status Final

© 2019 ECSEL Joint Undertaking. – Print Date 00 XXX 0000 PUBLIC Page 22 of 39

Figure 14: BB6 decomposition into the I-MECH structure.

The four functional blocks have been defined as follows:

● BB6a is the automatic controller commissioning interface (Layer 3);
● BB6b is the trajectory manager block (Layer 2);
● BB6c is the data acquisition module (Layer 2);
● BB6d is the system identification and tuning manager module (Layer 3).

In order to work properly, the functional blocks of BB6 must communicate to each other.
As general concept, the communication between layer 2 and layer 3, in the case of BB6, can be explained shown in
Figure 15.

Figure 15: BB6 communication flow.

 Doc ID 19110501R02

 Doc Creation Date 09 April 2018

 Doc Revision 02

 Doc Revision Date 26 NOVEMBER 2019

 Doc Status Final

© 2019 ECSEL Joint Undertaking. – Print Date 00 XXX 0000 PUBLIC Page 23 of 39

The automatic controller commissioning interface, which is located in Layer 3, get the user desired parameters and
send the proper setup information to the trajectory manager block (which is located in layer 2) and to the system
identification and tuning manager module (that is located in layer 3).
The trajectory manager block, through the drive control, make the system to perform the desired identification
trajectories, meanwhile the data acquisition module (which stays in layer 2), acquired the signals to use for the
system identification procedure. At the end of the excitation procedure, the data acquired from the data acquisition
module must be sent to the system identification and tuning manager module (layer 3) in order to be analysed for
system identification procedure and the automatic tuning of the control parameters. When the control parameters are
ready, they must be sent in the driver in order to be used.

5.1 Communalities in information exchange
The pilots where BB6 should be tested are Pilot 1, Pilot 2 and Pilot 5. Due to the fact that Pilot 1 and Pilot 2 share
the same architecture (see figure 16), BB6 is initially validated on Pilot 1 and Pilot 5.
In all these different Pilot plants, BB6 needs to transfer the same information between the four functional blocks.
In this chapter, the communication between layer 2 and layer 3 functional blocks is shown.
Remark
The measurement units of the signals, in order to comply with the BB6 work, must be in IS

Figure 16: BB6 decomposition into the AxChange architecture of Pilot 1 and Pilot 2.

BB6a - BB6b data communication

The communication between the automatic controller commissioning interface (BB6a) and the trajectory manager block

(BB6b) consists, at least, in the following data transfer.

Table 3: From BB6a to BB6b

Data acronym Description Type

BB6a

BB6

BB6

BB6c

 Doc ID 19110501R02

 Doc Creation Date 09 April 2018

 Doc Revision 02

 Doc Revision Date 26 NOVEMBER 2019

 Doc Status Final

© 2019 ECSEL Joint Undertaking. – Print Date 00 XXX 0000 PUBLIC Page 24 of 39

(not mandatory)

START Start for the autotuning procedure Boolean

AT_TYPE Autotuning type (open-loop or closed-loop) Integer (Enumerative)

POS_LOOP Desired position loop enable Boolean

VEL_LOOP Desired velocity loop enable Boolean

Trj_type Set point trajectory type Integer (Enumerative)

Trj_ff_type Feedforward type Integer (Enumerative)

max_pos Maximum reachable position Real

max_vel Maximum reachable velocity Real

max_trq Maximum reachable torque/force Real

ff_amplitude Feedforward amplitude value Real

From BB6b to BB6c

Data acronym

(not mandatory)

Description Type

STATUS Status of the autotuning procedure Boolean

BB6c - BB6d data communication

The communication between the data acquisition module (BB6c) and the system identification and tuning manager module

(BB6d) consists, at least, in the following data transfer.

Table 3: From BB6c to BB6d

Data acronym

(not mandatory)

Description Type

trq_ref Torque reference to the system Real [time vector]

vel Measured velocity Real [time vector]

position Measured position Real [time vector]

Ts Sampling time Real

From BB6d to BB6c

Data acronym

(not mandatory)

Description Type

- - -

BB6d - DRIVE data communication

The communication between the system identification and tuning manager module (BB6d) and the drive consists, at least,

in the following data transfer.

Table 3: From BB6d to DRIVE

Data acronym

(not mandatory)

Description Type

VEL_LOOP Desired velocity loop enable Boolean

Kp_v Proportional velocity gain Real

Ti_v Integral velocity time constant Real

Td_v Derivative velocity time constant Real

N_v Derivative velocity filter coefficient Real

 Doc ID 19110501R02

 Doc Creation Date 09 April 2018

 Doc Revision 02

 Doc Revision Date 26 NOVEMBER 2019

 Doc Status Final

© 2019 ECSEL Joint Undertaking. – Print Date 00 XXX 0000 PUBLIC Page 25 of 39

Tt_v Tracking velocity time constant Real

POS_LOOP Desired position loop enable Boolean

Kp_v Proportional position gain Real

Ti_v Integral position time constant Real

Td_v Derivative position time constant Real

N_v Derivative position filter coefficient Real

Tt_v Tracking position time constant Real

BQ1_ENABLE First biquadratic filter enable Boolean

A_BQ1 First biquadratic filter coefficient A Real

B_BQ1 First biquadratic filter coefficient B Real

C_BQ1 First biquadratic filter coefficient C Real

D_BQ1 First biquadratic filter coefficient D Real

E_BQ1 First biquadratic filter coefficient E Real

F_BQ1 First biquadratic filter coefficient F Real

BQ2_ENABLE Second biquadratic filter enable Boolean

A_BQ2 Second biquadratic filter coefficient A Real

B_BQ2 Second biquadratic filter coefficient B Real

C_BQ2 Second biquadratic filter coefficient C Real

D_BQ2 Second biquadratic filter coefficient D Real

E_BQ2 Second biquadratic filter coefficient E Real

F_BQ2 Second biquadratic filter coefficient F Real

BQ3_ENABLE Third biquadratic filter enable Boolean

A_BQ3 Third biquadratic filter coefficient A Real

B_BQ3 Third biquadratic filter coefficient B Real

C_BQ3 Third biquadratic filter coefficient C Real

D_BQ3 Third biquadratic filter coefficient D Real

E_BQ3 Third biquadratic filter coefficient E Real

F_BQ3 Third biquadratic filter coefficient F Real

BQv_ENABLE Velocity biquadratic filter enable Boolean

A_BQv Velocity biquadratic filter coefficient A Real

B_BQv Velocity biquadratic filter coefficient B Real

C_BQv Velocity biquadratic filter coefficient C Real

D_BQv Velocity biquadratic filter coefficient D Real

E_BQv Velocity biquadratic filter coefficient E Real

F_BQv Velocity biquadratic filter coefficient F Real

BQp_ENABLE Position biquadratic filter enable Boolean

A_BQp Position biquadratic filter coefficient A Real

B_BQp Position biquadratic filter coefficient B Real

C_BQp Position biquadratic filter coefficient C Real

D_BQp Position biquadratic filter coefficient D Real

E_BQp Position biquadratic filter coefficient E Real

F_BQp Position biquadratic filter coefficient F Real

From DRIVE to BB6d

Data acronym

(not mandatory)

Description Type

- - -

 Doc ID 19110501R02

 Doc Creation Date 09 April 2018

 Doc Revision 02

 Doc Revision Date 26 NOVEMBER 2019

 Doc Status Final

© 2019 ECSEL Joint Undertaking. – Print Date 00 XXX 0000 PUBLIC Page 26 of 39

6 Interfacing with production systems

6.1 Pilot 1 (Sioux CCM)
The Pilot 1 application has been extended with the following functionality in Layer 3:

● Monitoring and predictive maintenance using data fusion (BB3)
● Self-commissioning using automatic system identification (BB6)
● High-level System Control following service oriented architecture (OPC UA)

Figure 17: Pilot 1 the generic substrate carrier (GSC)

The architecture and design of this Layer 3 functionality is shown in the figure below, and further explained in section
6.1.1. The integration of the OPC UA server is further explained in section 6.1.2.

 Doc ID 19110501R02

 Doc Creation Date 09 April 2018

 Doc Revision 02

 Doc Revision Date 26 NOVEMBER 2019

 Doc Status Final

© 2019 ECSEL Joint Undertaking. – Print Date 00 XXX 0000 PUBLIC Page 27 of 39

Figure 18: The AxChange server as positioned in the layered architecture.

6.1.1 System tools for top layer interfacing + data fusion

The tools for top layer interfacing and data fusion are combined into a single architectural framework, called
AxChange. This framework serves primarily as a communication gateway between the real-time motion controller in
Layer 2 and the various applications in the top layer of the production pyramid (Layer 3 and above). Besides that,
this AxChange framework has been extended with the following rich functionality:

● Automatic storing sensor and controller signals to the file system, such that historic data from multiple
sources (data fusion) is available for algorithms such as those provided with BB3 and BB6.

● A standard generic GUI application that is able to “read and interpret” the motion control configuration, in
order to provide an interface to the user - all without the need of programming even a single line of code.

● Automatic generation of interface files for various programming languages (like C#, Python, etcetera), such
that new development test-scripts and production applications can be easily written and connected to the
motion control platform. This has been referred to as “Engineering Programming Language” (EPL) or
programming environment in D5.1 and D5.2 requirements.

 Doc ID 19110501R02

 Doc Creation Date 09 April 2018

 Doc Revision 02

 Doc Revision Date 26 NOVEMBER 2019

 Doc Status Final

© 2019 ECSEL Joint Undertaking. – Print Date 00 XXX 0000 PUBLIC Page 28 of 39

An example of historic data from multiple sensors that has been recorded by AxChange is shown below.

Figure 19: Example of logged data on layer 3 in the I-MECH architecture.

A screenshot of the generic GUI application, configured for Pilot 1, is shown below.

Figure 20: A generic GUI on layer 3 in the I-MECH architecture.

An example of the Engineering Programming Language environment is shown below, in this case for the Python
language. Note the autocomplete feature: the dropdown list that appears after entering the dot.

 Doc ID 19110501R02

 Doc Creation Date 09 April 2018

 Doc Revision 02

 Doc Revision Date 26 NOVEMBER 2019

 Doc Status Final

© 2019 ECSEL Joint Undertaking. – Print Date 00 XXX 0000 PUBLIC Page 29 of 39

Figure 21: Example of the Engineering programming language environment.

Also interactive code documentation is included in the EPL:

Figure 22: Documentation example of the Engineering programming language.

This EPL feature of the AxChange framework has been extensively used to test and integrate the Layer 3
components of BB3 and BB6 with the Pilot 1.

6.1.2 OPC UA service oriented architecture

The architecture diagram in the introduction of this Pilot 1 chapter already explained that the OPC UA server of
Pilot 1 has been built on top of the AxChange framework. This is also referred to as the “AxChange to OPC UA
bridge”. Since AxChange is a multi-client framework, this OPC UA bridge can co-exist with legacy existing Layer 3
applications.

OPC UA open source tooling
For the OPC UA server part of the bridge, OPC UA “C” version open62541 (http://open62541.org) has been chosen.
This is an open source and free implementation of OPC UA (OPC Unified Architecture) written in the common subset
of the C99 and C++98 languages.

http://open62541.org/

 Doc ID 19110501R02

 Doc Creation Date 09 April 2018

 Doc Revision 02

 Doc Revision Date 26 NOVEMBER 2019

 Doc Status Final

© 2019 ECSEL Joint Undertaking. – Print Date 00 XXX 0000 PUBLIC Page 30 of 39

Next, the first OPC UA client is “FreeOpcUa Client” written in the Python language. This is a generic GUI is available
as an open source project on GitHub. In the figure below, this GUI is shown when connected to Pilot 1.

Figure 23: Screenshot of a generic OPC UA client showing an I-MECH example object within the OPC UA hierarchie.

Please note that the commands are all specific for Pilot 1, such as abort(), initialize(), set_velocity() and so on. Using
the get_info() function, the state of Pilot 1 can be retrieved.

Also a second OPC UA client is created, using Node-RED technology. Node-RED is a programming tool for wiring
together hardware devices, APIs and online services in new and interesting ways. In our case, a Node-RED OPC UA
client has been realized, and this client has been wired to a Node-RED web server. As a result, the Pilot 1 could be
monitored and controller via a standard web browser, as shown below.

 Doc ID 19110501R02

 Doc Creation Date 09 April 2018

 Doc Revision 02

 Doc Revision Date 26 NOVEMBER 2019

 Doc Status Final

© 2019 ECSEL Joint Undertaking. – Print Date 00 XXX 0000 PUBLIC Page 31 of 39

Figure 24: The Pilot 1 controlled with an OPC UA connection and a generic GUI.

The architecture of the entire OPC UA stack is shown in the figure on the right.

The OPC UA stack has been built on top of the brownfield AxChange
framework in Layer 2, starting with a generic AxChange client using generated
C-code from the AxChange toolset.

Then the magic starts here: The AxChange messages and commands are
mapped on OPC UA messages and commands. At this point, some
restrictions apply:

● For the sake of demonstrating OPC UA, only the most relevant subset
of the available Pilot 1 commands are mapped. With these mapping
principles proven, it is just a matter of more engineering to apply the
full Pilot 1 mapping to OPC UA.

● Within the OPC UA framework, the semantics and information models
of the messages and commands are specified in the Companion
Specs (CS). It is up to the service provider of OPC UA to decide
whether a dedicated “external” CS is to be adhered, or that the OPC
UA server is compliant with one of the many publicly available “joint”
CS (a link to this list is given below). The two most relevant joint CS
that were considered are:

○ OPC UA for Robotics
○ OPC UA for Machine Vision

However, both these joint CS didn’t represent a “perfect match”.
Mapping of the currently available Pilot 1 commands to either one of
these public joint CS would have required some inconvenient
workarounds. In order to keep the demonstration on Pilot 1 to-the-
point, lean and mean, a dedicated CS has been chosen. In a
greenfield project, one would rather select a joint CS, and start
developing from there.

Given the dedicated “external” CS, an open62541-based OPC UA server has
been realized. This concludes the “OPC UA Bridge”.

Finally, two independent OPC UA client applications have been connected to
this OPC UA server.

 Doc ID 19110501R02

 Doc Creation Date 09 April 2018

 Doc Revision 02

 Doc Revision Date 26 NOVEMBER 2019

 Doc Status Final

© 2019 ECSEL Joint Undertaking. – Print Date 00 XXX 0000 PUBLIC Page 32 of 39

● The Python “FreeOpcUa Client” just executes out-of-the-box.
● For the web client that is based on Node-RED technology, a mapping has been “wired” from the CS

information model to the corresponding web controls. This has resulted in an “Actions” pane and a “State”
pane on the web GUI. As the photo shows, this web page can be viewed on any standard web browser.

The list of Joint CS can be found via the following link:
https://opcfoundation.org/developer-tools/specifications-opc-ua-information-models

More generic information about OPC UA CS is provided via the following link:
https://opcfoundation.org/about/opc-technologies/opc-ua/ua-companion-specifications/

6.2 Pilot 2 (Nexperia)
To exploit the synergy in the I-MECH platform, Pilots 1 and 2 have joined forces to integrate the pilot applications
using the launching version of the I-MECH platform. This 1.0 version of the I-MECH platform consists of Sioux
CCM’s AxChange environment as depicted in Figure 18 in the preceding section. EtherCAT building blocks,
specifically BB1 and BB5, were integrated into Pilot 2.

Figure 25: Pilot 2 before the demonstration during the face-to-face meeting in Eindhoven (11-2019).

Since Pilot 2 shares the AxChange platform with Pilot 1, all “layer 3” capabilities mentioned in the previous section
were also available to Pilot 2. Although the OPC-UA features could have been validated on Pilot 2, it was decided to
perform the proof of concept on Pilot 1. This also holds for the functionality of BB3 and BB6, which are now
automatically available to Pilot 2, but may have to be adapted to the specific maintenance characteristics (BB3) or
dynamic behaviour (BB6) of Pilot 2. Pilot 2 did rely to a great extent on the service-oriented AxChange system. This
permitted a multi-client operating mode with the following benefits:

● A graphical user interface to inform the user about the basic status of the machine and to enable and control
tracing features as well as operate the machine

https://opcfoundation.org/developer-tools/specifications-opc-ua-information-models
https://opcfoundation.org/about/opc-technologies/opc-ua/ua-companion-specifications/

 Doc ID 19110501R02

 Doc Creation Date 09 April 2018

 Doc Revision 02

 Doc Revision Date 26 NOVEMBER 2019

 Doc Status Final

© 2019 ECSEL Joint Undertaking. – Print Date 00 XXX 0000 PUBLIC Page 33 of 39

● Python as an engineering programming language to define several integration, tuning, measurement and
regression tests at a user-friendly, high, abstraction level

6.3 Demonstrator 1 (J&J Vision Care)

Demonstrator 1 incorporates BB3 condition monitoring to monitor and ultimately predict the health of the material
transfer layer (Magnemotion Quickstick Linear Synchronous Motor (LSM)), the product carrier/pallet and the product
itself (contact lenses). The condition monitoring element of the I-MECH solution as part Demonstrator 1 compliments
elements of BB1 and BB2 in the form of smart wireless sensors, developed in partnership with TNI, which provide
the system and carrier data required for the condition monitoring algorithm.
As per the requirements listed in D2.3 for the J&J Vision Care material transfer layer, the following parameters were
identified as critical for monitoring the condition of the lens transfer system Magnemotion Quickstick LSM:

● Vibration of the carrier/pallet
● Magnetic field strength of the LSM
● Temperature of the lens curing tunnel
● Light intensity in the lens curing tunnel

Having developed the wireless sensing capabilities to detect the above parameters with TNI in BB1 and BB2, the
condition monitoring algorithm was developed in partnership with ITML, the developmental work carried out by them
is detailed in section 6.3.1.

6.3.1 BB3 Condition monitoring algorithm for Demonstrator 1

Dataset

In order to develop an algorithm for the monitoring of the lens transfer system, a data rich training set was required.
Due to the absence of data recording on the current J&J Vision Care system, an existing dataset was used for the
baseline algorithms in order to build a model.

For the baseline models and feature selection methods on industrial sensor data failure prediction, the SECOM

dataset
[1]

 was used. The dataset contains Data from a semi-conductor manufacturing process. A complex modern

semi-conductor manufacturing process is normally under consistent surveillance via the monitoring of
signals/variables collected from sensors and or process measurement points. The dataset explored, in this case,
represents a selection of such features where each example represents a single production entity with associated
measured features and the line testing labels represent a simple pass/fail yield for in house.

• Number of Instances: 1567 (1463 pass/ 104 fail)

• Number of Attributes: 591

 [1] https://archive.ics.uci.edu/ml/datasets/secom

Feature Selection and Classification

During the data normalization it was found that the range of the data was recorded from 591 sensors. For the feature
selection, the Variance Threshold method was used to remove features with variation below a certain cutoff (based
on the notion that the features that do not vary much within themselves carry low predictive value). The k-best
features were selected using chi square (χ

2
), mutual information and principal components analysis (PCA).

For binary classification, 8 algorithms were tested, using Synthetic Minority Over-sampling Technique on the
SECOM unbalanced dataset (1463 pass/ 104 fail)

https://archive.ics.uci.edu/ml/datasets/secom
https://archive.ics.uci.edu/ml/datasets/secom

 Doc ID 19110501R02

 Doc Creation Date 09 April 2018

 Doc Revision 02

 Doc Revision Date 26 NOVEMBER 2019

 Doc Status Final

© 2019 ECSEL Joint Undertaking. – Print Date 00 XXX 0000 PUBLIC Page 34 of 39

For one-class classification, the training was on the pass samples and the prediction on the fail instances using
anomaly detection. Six algorithms were tested.

Figure 26: Feature selection techniques (F1 scoring on prediction=fail)

During the data normalization it was found that the range of the data was recorded from 591 sensors. For the feature
selection, the Variance Threshold method was used to remove features with variation below a certain cutoff (based
on the notion that the features that do not vary much within themselves carry low predictive value). The k-best
features were selected using chi square (χ

2
), mutual information and principal components analysis (PCA).

For binary classification the following algorithms were explored:

• Nearest Neighbors

• Linear SVM

• RBF SVM

• Gaussian Process

• Decision Tree

• Random Forest

• Neural Net

• AdaBoost

• Naïve Bayes

 Doc ID 19110501R02

 Doc Creation Date 09 April 2018

 Doc Revision 02

 Doc Revision Date 26 NOVEMBER 2019

 Doc Status Final

© 2019 ECSEL Joint Undertaking. – Print Date 00 XXX 0000 PUBLIC Page 35 of 39

Figure 27: Binary classification (chi
2
)

For the one-class classification the following algorithms were explored:

• Robust covariance

• One-Class SVM poly

• One-Class SVM rbf

• One-Class SVM sigmoid

• Isolation Forest

• Local Outlier Factor

Figure 28: One-class classification(chi
2
)

 Doc ID 19110501R02

 Doc Creation Date 09 April 2018

 Doc Revision 02

 Doc Revision Date 26 NOVEMBER 2019

 Doc Status Final

© 2019 ECSEL Joint Undertaking. – Print Date 00 XXX 0000 PUBLIC Page 36 of 39

Figure 29: One-class classification (PCA)

Conclusions and lessons learned

Traditionally, the ML approach requires large data. For this dataset. the large number of features (591) compared to
the small number of samples (1567) makes this an inherently difficult task. Feature selection is the best bet. In such
cases, insight on the features themselves may be helpful for feature engineering.

Moreover, the fail samples are too few (104) to create an accurate model. This is a real-world problem that requires
to look at heuristics methods to perhaps add to the prediction algorithms or create synthetic data.

As for the anomaly detection, the pass samples are homogeneous while the fail samples are heterogeneous. This is
to be expected in industrial data with low number of fail samples.

6.3.2 Production system integration Layer 3

For Demonstrator 1, all condition monitoring and data analytics will be located in a J&J secure Microsoft Azure cloud
server. The sensor data recorded and condensed by the embedded wireless sensor board is communicated to Azure
via an edge gateway with a J&J secure image, this allows the bypassing of the system PLC for direct data transfer to
the cloud for efficient data transfer. The sensor data is then contextualised in Azure using the Magnemotion PLC
data for the LSM layer, providing carrier position and velocity data. The PLC data is communicated to Azure using
OPC UA/ Automation ML communication protocols. The data transfer system is visually represented in Figure 30.
Once the data is contextualised in Azure it is then presented to enterprise systems for visualisation in Power BI and
also fed into machine learning algorithms developed by the business for systems and yield optimisation. The data
path within Azure is illustrated in Figure 31.

 Doc ID 19110501R02

 Doc Creation Date 09 April 2018

 Doc Revision 02

 Doc Revision Date 26 NOVEMBER 2019

 Doc Status Final

© 2019 ECSEL Joint Undertaking. – Print Date 00 XXX 0000 PUBLIC Page 37 of 39

Figure 30: Sensor and PLC data communication to Layer 3 cloud services

Figure 31: Data processing within Layer 3 cloud service

6.4 Designing tools for data fusion from various types of sensors

Introduction
In the framework of I-MECH, a draft version of a Data Fusion Bus has been deployed by ITML in order to fuse data
from various data sources and sensors. This technology combines the features and capabilities of several big data
applications and utilities within a single platform.
The key capabilities of DFB are:

● Real-time monitoring and event-processing, semantic fusion of events not coinciding in time.
● Data aggregation from heterogeneous data sources and data stores.
● Real time analytics offering ready to use Machine Learning algorithms for classification, clustering,

regression, anomaly detection.
● An extendable and highly customizable User Interface for Data Analytics, manipulation and filtering. The UI

also includes functionality for managing the platform.
● Web Services for exploiting the platform outputs for Decision Support.

 Doc ID 19110501R02

 Doc Creation Date 09 April 2018

 Doc Revision 02

 Doc Revision Date 26 NOVEMBER 2019

 Doc Status Final

© 2019 ECSEL Joint Undertaking. – Print Date 00 XXX 0000 PUBLIC Page 38 of 39

Figure 32: A Data Analytics Solution

Architecture
The DFB architecture is depicted in the following figure:

Figure 33: DFB Architecture

The main building blocks of DFB are:

 Doc ID 19110501R02

 Doc Creation Date 09 April 2018

 Doc Revision 02

 Doc Revision Date 26 NOVEMBER 2019

 Doc Status Final

© 2019 ECSEL Joint Undertaking. – Print Date 00 XXX 0000 PUBLIC Page 39 of 39

● Support for multiple data streams and data stores: Readily available interfaces are in place that allow for
data acquisition for all well-established RDBMSs, data streams (using MQTT), NoSQL databases, shared
file systems (HDFS Hadoop). This functionality is supported by Kafka Connect.

● The Streaming Core of the platform is Apache Kafka. DFB relies on Kafka ‘s distributed messaging system
to provide high fault-tolerance (Resiliency to node failures and support of automatic recovery) and elasticity -
high scalability.

● Internal Store and Search Engine: When persistence of data within the platform is required, the Elastic
stack (Elasticsearch and Logstash) is utilized. Data may flow either through Kafka connectors (usually in
cases of stream data) or may be directly imported to Elasticsearch. Elasticsearch also provides provide high
fault-tolerance and scalability.

● AAA: Authentication, authorization and accounting mechanisms that enhance the security of the platform.
Moreover, the security mechanism includes data encryption through TLS and certificates.

● Data Analytics: DFB supports batch processing and stream processing with Apache Spark, Kafka Streams &
KSQL, Spark Streaming and python scikit-learn.

● DFB Core: The data flow container is responsible for providing business logic to DFB and managing all the
data flows. It is a custom web application (based on PHP Laravel and Redis). DFB also exposes a
configurable set of web services for exporting DFB output providing Decision Support to external systems.

● UI: Provides the human interface of DFB Core. Customizable visualization functionality is provided by
integrating Grafana.

The aforementioned framework has been deployed during the last months; the plan is to have it connected to the
ecosystem of I-MECH, in order to fuse data from various data sources and sensors focusing on the Johnson and
Johnson use case; other I-MECH pilots and demonstrators will be considered as well.

Acknowledgement
This project has received funding from the Electronic Component Systems for European Leadership Joint

Undertaking under grant agreement No 737453. This Joint Undertaking receives support from the European

Union’s Horizon 2020 research and innovation program and Netherlands, Czech Republic, Latvia, Spain,

Greece, Portugal, Belgium, Italy, France, Ireland

