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 Summary 

 The System Behavior Layer addresses the necessary technologies to integrate lower I-MECH layers with state of 
the art Manufacturing execution systems (MES systems), with special focus on smart functionality following the 
Industry 4.0 paradigm.  The I-MECH program focuses on adding smarter functions as predictive diagnostics and 
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are divided across I-MECH building blocks: 
 
• BB3 Condition monitoring and predictive diagnostics of electrical drives 
• BB6 Automatic commissioning of motion control systems. 
 
The smart part of the building blocks with these diagnostics and automatic commissioning functions are active on 
the System Behavior Layer. So these building blocks will impact the interfaces between the Control layer and the 
System Behavior Layer. This document D5.5 addresses the usage of standardized interface for integration with and 
data transfer to the System Behavior Layer. The D5.6 focuses on the functionality of the smart building blocks 
themselves. 
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Abbreviations & Definitions 
 

 Abbreviation Description 

 BB  Building block 

 COM Component object model 

 DFB Data Fusion Bus 

 ERP Enterprise Resource Planning 

 EPL Engineering Programming Language 

 gRPC Remote procedure call, an open source RPC framework originating from Google 

 GUI Graphical user interface 

 KPI Key performance indicator 

 LSM Linear Synchronous Motor 

 MES Manufacturing execution system 

 OPC UA Open Platform Communication - Universal Architecture 

 OPC DA Open Platform Communication – Data Access 

 OPC HDA Open Platform Communication – Historical Data Access 

 OPC AE Open Platform Communication – Alarms and Events 

 PCA principal components analysis 

 RAMI Reference Architectural Model for Industry 4.0 

 SCADA supervisory control and data acquisition 

 SOA Service oriented architecture 

 

 Definition Description 

   

 
 

1 Introduction 
Work package 5 in the I-MECH project considers the System Behaviour Layer, within I-MECH also mentioned as 
Layer 3. The I-MECH program focuses on adding smarter functions as predictive diagnostics and automatic 
commissioning to new but also to existing machine control infrastructure. The different type of functions are divided 
across I-MECH building blocks: 
• BB3 condition monitoring and predictive diagnostics of electrical drives 
• BB6 Automatic commissioning of motion control systems. 
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The smart part of the building blocks providing these diagnostics and automatic commissioning functions are active 
on the System Behavior Layer (layer 3). So these building blocks will impact the interfaces between the control layer 
and the System Behavior Layer. This document D5.5 addresses the usage of standardized interface for integration 
with and data transfer to the System Behavior Layer. The D5.6 focuses on the functionality of the building blocks 
themselves. 
 
Relevant deliverables for the System behaviour layer from other work packages are: 
● D2.4 General specification and design of I-MECH reference platform 
● D5.2 System behaviour layer integration and connectivity requirements and specification 
Together, these document give the scope for the tooling and interfaces needed on the System Behaviour Layer. 
 

1.1 Scope 
The focus of this document is on the communication between the centralised control layer (layer 2) and System 
Behaviour Layer. The focus of I- MECH concentrates on the functional building block on layer 1 and layer 2. They 
form the core of the plug and produce infrastructure. However without the system behaviour layer 3 the functionality 
cannot be fully operated. This document describes the functionality and interfaces needed to operate the building 
blocks on layer 2 and layer 1 from the perspective of layer 3. 
 
To enable the use of building blocks outside I-MECH, it is important to look at standardisation of interfaces. Chapter 
2 elaborates on the important standards to take into account for the I-MECH interfaces to the higher system layers. 
 
Chapter 3 recapitulates the I-MECH architecture as far as relevant for the system behaviour layer. Chapter 4 and 5 
describes the configuration and data interfaces as presented by the building blocks 3 and 6. The last chapter 6, 
reports on the integration of the smart building blocks with production systems. 
 

1.2 Mapping functions on system layers and interfaces 
Within I-MECH, the aim is to define generic building blocks for motion control, that are reusable. The building blocks 
can be made more generic when the different settings, needed by different pilots and demonstrators, are abstracted 
and parameterized. By controlling the parameters from the system behaviour layer, the building block parts on the 
control layer become reusable across the pilots and demonstrators. As a consequence the interface between the 
layers must support the setting and readback of the parameters. Within I-MECH this is especially important for the 
smart modules BB3 and BB6. In work package 5, these two building blocks formed the blueprint for the mapping of 
functionality on the layers and also for the needed data interface between layer 2 and layer 3. Paragraph 1.3 and 1.4 
describe the context for these building blocks. 
 

1.3 BB3 condition monitoring and predictive diagnostics of electrical 
drives 

The importance of condition monitoring and predictive maintenance in motion systems is growing as number of 
motion systems and their complexity (number of axes, performance parameters) increase with extending the 
automation of huge range of human activities and manufacturing processes. Using robots and multi-axis 
manipulators becomes a common matter in the human life. The effective monitoring and proper function watching of 
the automation systems become insufficient in most of these situations. Precise fault detection is required at least to 
help service personnel to replace faulty units. However, every single fault leads to outage of the whole complex 
system e.g. production line, power plant, etc. A prevention of faults and maintenance strategies are much more 
beneficial for system reliability and for operational and service costs. There are few typical strategies how to prevent 
unexpected system outages: 

● preventive maintenance, 
● fault tolerant systems, 
● predictive maintenance. 
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These strategies can be combined to reach reasonable reliability of the whole system for reasonable cost. From the 
typical strategies the most required approach is the predictive maintenance. The BB3 is a building block aiming to  
pass maintenance actions under this approach as much as possible. 
 

1.4 BB6 Automatic commissioning of motion control systems 
One of the difficulties that technicians have to face during the commissioning of a mechatronic system is related to 
the tuning of the motion controller parameters. In fact, each mechatronic system is different from the others and 
therefore, to obtain the required performance, its controller has to be properly tuned by considering its own 
peculiarities. 
In this framework, a methodology that is able to automatically tune the controller parameters of a generic 
mechatronic system can reduce the commissioning time and, furthermore, it can help to obtain the required 
performance by taking into account the specific behaviour of the system. This generally yields an increment of the 
quality of the overall production and, at the same time, a significant reduction of the costs and for this reason such a 
kind of functionality is more and more required for industrial drives (see D8.2 for the exploitation strategies related to 
this issue). 
The most used controller in mechatronics is made by a cascade architecture (see Deliverable 4.1). In the specific 
case of this deliverable, that is strictly linked to the BB6, a methodology that is able to tune the velocity and position 
control loops parameters will improve the performance and it will decrease the commissioning time of mechatronic 
systems that use standard control architectures.  
BB6 is related to the Scientific and Technological Development Objective ST4 of the I-MECH project, which consists 
in the development of specific condition monitoring functionalities for the system behaviour layer. Indeed, in addition 
to simplify the commissioning phase of the system at the beginning of its operations, when the system behaviour 
layer recognizes that the performance of the motion control system has degraded (because, for example, there is a 
change in the dynamics of the system), the automatic tuning procedure can be exploited in order to recover the 
original performance and to satisfy the control requirements. 
 
 

2 Interoperability by standardised interfacing and data 
models 

When industry 4.0 talks about ‘plug and produce’ and ‘machine to machine communication infrastructure’, the 
questions how to standardise the communication and how to standardise information exchange become very 
important to get answered. Standardising is only meaningful as the environment also can use these standardised 
interfaces. The environment typically are other machines on the work floor on one side and the higher factory 
process layers on the other side. A standardised 3 layer model RAMI 4.0 describes a generalised Architecture. 
 

2.1 RAMI 4.0 
RAMI 4.0 stands for ‘Reference Architectural Model for Industry 4.0’. RAMI is a three-dimensional layer model that 
compares the life cycles of products, factories, machinery with the hierarchy levels of Industry 4.0 and the data 
aggregation layers needed to monitor and control the infrastructure. 
It provides a reference to standards for industrial automation using three main axis:  
● Life Cycle Value stream: from development till production; 
● Hierarchy levels: The levels of connected machine control; 
● Layers: The process or work flow in a factory from asset till business; 
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Figure 1: RAMI framework, source Platform Industry 4.0 

 
In I-MECH the ‘communication layer’ and the ‘information layer’ in the RAMI 4.0 are important, because the 
determine the interconnectivity to the production pyramid. 
 
The industry is standardising on OPC UA for communication and on standardised data models for information 
exchange. The drafting and acceptance for communication specification standards drafting and acceptance for data 
models is a time consuming process which is still ongoing. 
 

2.2 OPC UA 
OPC UA stands for Open Platform Communication Unified Architecture. It defines a platform independent service-
oriented architecture that integrates all the functionality of the individual COM OPC Classic specifications into one 
extensible framework.  
 
The OPC UA standard describes how to communicate in a standardised way with mechanisms like client-server, 
publish-subscribe, events and methods (communication layer). It does not prescribe which data to communicate 
(information layer). This is part of the data model and can be part of an industry standard or vendor information 
model which is defined out of the scope of the OPC UA base. Industry standards are defined in Companion 
specifications. 

 
Figure 2: The separation of communication and information exchange in the OPC Unified Architecture 
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2.3 OPC UA companion specification 
Standardisation of the OPC UA data models for industry is ongoing. Groups of vendors and branches are proposing 
draft companion specifications. Special importance for machine builders are the companion specifications drafted by 
the VDMA, the German Mechanical Engineering Industry Association. (See Lit Ref [6] and Lit Ref [7]) 
 

2.4 Adaptation in the field 
OPC-UA is based on distributing an object model of the data living in a device or building block (the information) 
through standardised interfaces. To use the data on the other side (Layer 3), the object model needs to be known 
there too. This comes down to the questions: 
● Which information is needed where in the system?  
● Which object/data models can provide this information distribution? 
 

2.4.1 Green field applications 
A green field application is one that is not yet made or is in the very early stages of development. For this type of 
applications new ways of working and new interfaces can easily be chosen. However the number of green field 
applications in the industry is very limited. Most of the time systems are built to last and be maintained for 15 years 
or even longer.   
 

2.4.2 Brown field applications 
A brown field application is an existing application. Most of the time existing applications need to be maintained. Part 
of the maintenance might be an upgraded to newly introduced standards. To be able to support upgrading, a 
migration path is needed. This is especially important for the interfacing to the brown field applications. 
 

2.5 using OPC UA in Green field and Brown field  
Most machines in industrial environments have a long life span of more than 15 years. So adding functionality is not 
simply replacing an old machine with a new one, denoted as a green field introduction (new machine introduction). 
Most of the times it means upgrading a machine, making adaptations to an existing machine (brown field). This can 
be done in the production chain or even in the field as a field upgrade. 
 

 
Figure 3: greenfield versus brownfield communication stack 

 
OPC UA can support brown field upgrades as long as a conversion layer can be supported as is shown in figure 3. 
The easiest way is to support the conversion application in the system behaviour layer. The layers 1 and 2 of the 
machines can than be left unchanged. An OPC UA server is build on top of a brown field client mapping the data 
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model of the brown field machine to the data structures as used in the OPC UA server. For the green field 
applications the OPC UA server can directly be run on layer 2. 
 

3 The I-MECH infrastructure 
The I-MECH infrastructure is bases on a modular design with building blocks with a specific set of functions. The 
building blocks are structured in a layered model. Most machines will cover three layers. Layer one ‘the 
instrumentation layer’ contains the low level functions like sensing and actuation, the layer two contains higher level 
functions for instantaneous control and operation of the machine. Layer thee contains more advanced functions for 
planning and scheduling giving flexibility to the machine. This layer also forms the access layer from layer 4, with 
typically ERP, MES or SCADA infrastructure. 
 

 
Figure 4: I-MECH architecture, featuring 3 layers, and showing context with Industry 4.0 with primary research focus highlighted. 

 
The mapping of functionality on the layers in example can be described as follows.  
 
Focused on motion control functionality: 
The highest, most abstract, Layer 3 (System Behaviour Layer), defines a system behaviour in terms of the desired 
motion trajectory. It addresses the fundamental demands which originate from the management layers of production 
systems. In addition, functionality such as user interaction, sequence and/or exception management can also be 
found in Layer 3. 
 
Layer 2 goes slightly deeper, and represents the algorithmic to manipulate the physical environment via the 
instrumentation layer (Layer 1). It can be implemented in either a decentralized or a centralized way, depending on 
the requirements at the system level. 
 
Focused on predictive maintenance: 
The highest, most abstract, Layer 3 (System Behaviour Layer), defines a system in terms of expected operation and 
deviations thereof enabling the system to draw conclusions on maintenance expectancy. 
Layer 2 goes slightly deeper and represents the algorithms to process, accumulate, filter and extract data from the 
instrumentation layer (Layer 1) in a way the extracted information from the data becomes useful in layer 3.  
 
A approach with functional building blocks forms the fundament of a plug and produce infrastructure. It is combined 
with a Service Oriented Architecture (SOA) to achieve a high degree of configurability, scalability and interoperability 
of the individual components, while maintaining the reliability, safety, certify ability and time-to-market benefits of off 
the shelf solutions. 
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Using a modular design forces to use interconnects between the functional blocks, otherwise no information 
exchange is possible. For real time control between layer 1 and 2 the interconnects are typically made with real-time 
protocols on field busses. The less time critical control between layer 2 and layer 3 can be performed with non-real-
time interfaces on top of Ethernet. Open protocols and interfaces are needed for plug and produce infrastructure. 
Although multiple open standards exists, the I-MECH building blocks will by default be based in EtherCat between 
layer 1 and 2 and on OPC-UA for communication between layer 2 and layer 3. Note that this does not exclude other 
standards. Most open standards support bridging information between each other. 
 

3.1 Communication and information layers 
The functional basis of an I-MECH system is process control. Modules become smart modules when they are “self-
descriptive”. At the factory level, an I-MECH system provides information and advanced functionality in the four main 
pillars: ‘Configuration’, ‘Process flow control’, ‘KPI and process monitoring’, and ‘Predictive maintenance’ as shown in 
figure 5. 
 

 
Figure 5: Functional and informational view of an I-MECH system 

 
Configuration 
Configuration and setup of a machine are needed to let the machine function properly. The efficiency of the 
supportive functions in the system, help to reduce the time needed for an operator to spend on the machine to keep 
it operational.  
Auto-configure and auto-calibrate are functions that become important as part of a fully automated system setup. 
Most existing systems do not (yet) have support for this kind of functionality. Building block 6 adresses the calibration 
of the controller given the machine mechanics using a auto tuning of control loop. 
 
To enable a more automated configuration, calibration and system setup, system specifics must be known at layer 3. 
This can be realised by using the right defaults in the programming, but can be realised more generic when the 
modules support a form of reflection. Telling the layer 3 what kind of module needs to be configured by smart module 
support functions like: 

● datasheet exchange, 
● automatic part reflection. 

 
With this information the features can be realised like: 

● auto-calibration,  
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● auto-configuration, 
● auto-tuning. 

 
Process flow control 
The process flow control is required in machine control to operate a system. Data streams involved are related to:  

● Operational control (real time behaviour), 
● Real time control loop data. 

All of the motion control solutions have a form of process flow control on board. 
 
KPI process monitoring 
The process monitoring is often used to feed data to the higher system layers like ERP, MES and SCADA systems. 
The focus is mainly process control related information. 

● Process monitoring 
o KPI’s  
o process analytics 

 
Predictive maintenance 
Maintenance of a machine is important to keep the system operational. The maintenance efficiency depends on the 
maintenance predictive support a machine can provide. Without this information, only reactive or time based 
maintenance is possible. Building block 3 addresses this functionality by adding predictive maintenance functionality 
to the system. 

● predictive maintenance  
o anomaly and failure prediction 

 
When building motion control systems it is important to realise that the data needed for these different functions like 
predictive maintenance and auto calibration have different time scales than the normal process control flow. This 
enables to handle these data streams in a non real time fashion.  
 
Information flows: 

● Configuration (relative static) 
● Predictive maintenance (long time scales) 

 
Figure 6 makes this explicit by showing the different functions on the different layers in the system. Looking in this 
way to the system also simplifies the mapping of different functions to different OPC UA companion specifications 
typically defined for configuration or for predictive maintenance. 
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Figure 6: Green field architecture with different types of data flows across the system layers 
 

3.2 Green field adaption 
The interface between the control layer (layer 2) and the behaviour layer (layer 3) will make use of an Ethernet 
interface.  
The behaviour layer must be able to connect several client applications to a server running on the motion control 
layer. Examples of such clients may be: 

● A graphical user interface (GUI) which enables user interaction with the devices connected to the I-MECH 
platform, 

● The engineering programming environment, which allows scripting of motion platform tasks, data acquisition, 
signal processing, calibration and tuning, 

● An OPC UA server, performing translation of OPC UA instructions to layer 2 instructions and vice versa, 
● Access to non-realtime functions of control building blocks (BB6 - BB9), such as tuning, calibration, 

configuration, monitoring, diagnostics and signal tracing, 
● Access to non-realtime functions of layer 1 building blocks (BB1, BB2, BB5) such as configuration, tuning, 

firmware update, monitoring, diagnostics and signal tracing 
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Figure 7: I-MECH Greenfield communication between the system layers 

 
 

3.3 Brown field adaption 
The interface between the control layer (layer 2) and the behaviour layer (layer 3) will make use of an Ethernet 
interface. Depending on the green field or the brown field case the protocol may be OPC UA or will be an existing 
proprietary protocol. In that case, an OPC UA server may run a level higher (level 3) to provide a standardised 
interface for communication with the factory automation layer (ERP, MES, SCADA). 
 
The behaviour layer must be able to connect several client applications (simultaneously) to a server running on the 
motion control layer. Examples of such clients may be: 
• A graphical user interface (GUI) which enables user interaction with the devices connected to the I-MECH platform, 
• The engineering programming environment, which allows scripting of motion platform tasks, data acquisition, signal 
processing, calibration and tuning, 
 
An OPC UA server, performing translation of OPC UA instructions to layer 2 instructions and vice versa, 
• Access to non-realtime functions of control building blocks (BB6 - BB9), such as tuning, calibration, 
configuration, monitoring, diagnostics and signal tracing, 
• Access to non-realtime functions of layer 1 building blocks (BB1, BB2, BB5) such as configuration, tuning, 
firmware update, monitoring, diagnostics and signal tracing 
 
 

4 Building block 3 
Let’s start with an example with I-MECH building block 3 on condition monitoring and predictive maintenance. This 
building block can be decomposed in different functional building blocks which together deliver the predictive 
maintenance functionality. Each sub module of building block 3 can be positioned in a different layer. (see figure 8). 
First of all the functionality can only be provided with additional sensing. The state of the machine must be monitored 
with accelerometers or vibration sensors (BB3a) at layer 1. The data coming from these sensors must be provider to 
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processing building blocks to do the real time analytic processing. Results of this processing need to be shared with 
building blocks on level 3. 
 
For each building block this mapping can be made. The mapping results in the information exchange that is needed 
between the layers. 
 

4.1 Communalities in information exchange 
The state of the electrical drive can be monitored with temperature sensors and current and voltage measurements 
which are normally available in the inverter controller. The measurement can be extended with accelerometers or 
vibration sensors data. All the sensing is realized in (BB3a) at Layer 1. The data coming from these sensors must be 
processed in real time analytic processing. Results of this processing need to be shared with sub-components on 
Layer 2 and/or 3. 
 

 
Figure 8: BB3 mapping in the I-MECH mechatronic system structure. 

 
Similar mapping exists also for other building blocks. The mapping results in the information exchange that is needed 
between the layers. 
 

 
Figure 9: Condition monitoring and predictive maintenance flowchart. 

 
Condition monitoring and predictive maintenance flow-chart contains set of successive tasks as it can be seen in 
Figure 9. These tasks of the BB3 can be divided into two groups as they are described in following sections. 
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4.2 Condition indicator extraction 
Condition indicator extraction tasks serve for monitoring of individual systems and for providing data corresponding 
to the system's behaviour deterioration or wear of some specific parts of the system. Triggers, Enable blocks and 
Condition Indicators are represented by functions/BB3 components in figure BB3-2. Their positioning in the I-MECH 
mechatronic system structure (see figure 8) is assumed at a place of BB3-a and BB3b in cases of using online 
monitoring of process data in Layer 1 and/or using BB3-a smart sensors. The alternative placing of these 
functionalities can be done at a position of BB3d in the case when the process data is transferred from Layer 1 to 
Layer 3 transparently and recorded in Layer 3 for the offline analysis (Pilot 5). Another possibility is to calculate the 
indicator in Layer 2. In this case, the process data is transferred from Layer 1 to Layer 2. The calculated condition 
indicator is transferred and recorded in Layer 3. Simulink is used as a primary development tool for components 
situated in (BB3-f). 

 
Figure 10: Condition monitoring and predictive maintenance flowchart. 

 
Condition indicators calculation is assumed under a specific condition (action) of the system (e. g. the system 
running at defined speed and defined load for a defined period, speed change from value1 to value2 at defined 
acceleration, …). A set of triggers can be used for the detection of the specific condition occurrence triggers and 
output enables, condition indicator calculation and monitoring. The ENABLE signal detects the beginning of the 
monitored action and enables condition indicator calculation and stays high when the monitored action stays in 
proper boundaries. ENABLE signals fall to low state in case of exceeding the monitored action boundaries. The 
condition indicator provides its output for communication to Layer 3 and for its record into the history file when it is 
successfully calculated.  
The condition indicator block calculates the CI value if the ENABLE signal from the trigger block is active. According 
to the defined period parameter (from Layer 3), it sends the CI value over the communication bus to Layer 3. The 
period parameter can be set for different CIs within different limits during system operation. 
 

4.3 Predictive maintenance 
Predictive maintenance tasks – Condition indicator values are recorded in files as it will be described later. Predictive 
maintenance functionality represents a set of tasks of processing the condition indicators realized on the recorded 
data (BB3-e). Individual tasks are data recording, data reduction and Remaining Useful Life estimation. All these 
functionalities are implemented into one state machine (executable program, the script running under MATLAB 
runtime). They are positioned in I-MECH mechatronic system structure in (BB3-d). MATLAB serves as a main 
development tool for predictive maintenance components running in (BB3-f). 
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Figure 11: (BB3-1a) Condition monitoring and Predictive maintenance functionalities decomposition into I-MECH layers. 

 

4.4 Configuration and setup 
 
System definitions 
A configurable set of various BB3 components can be used in a mechatronic system for condition monitoring and 
predictive maintenance. A condition indicator function, data records file structure and set of parameters represent a 
single condition indicator. The used trigger is implementation-dependent and defines conditions under which 
condition indicator is calculated. This set of definitions provides the functionality to store data history. RUL estimation 
and failure prediction can be done on the stored data. In the following, we define the required system data structures. 
 

● BB3 data path – defines a global path in the file system to BB3 data structure. It is a top-level directory in the 
figure BB3-3. The internal directory and file structure are defined below. This path has to be known globally. 
Other definitions will be available in the internal definition file (BB3 definitions). 

● BB3 library path – globally defined path in the I-MECH platform to set of components. 
 
Definition above are expected like a common definition under I-MECH platform. 
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4.5 Process flow control 
 
BB3 definitions  

● Component types definition – defines types of the monitoring functions available in the I-MECH platform 
library.  

o Component type – ID of a component available in the BB3 components library (e.g. I2t_condition 
indicator, parks_pattern_indicator, trigger_const, trigger_power_on, …. ) 

o Inputs structure (trigger_input, process_variable,) 
{ 
data_type  Input_name_1 
… 
data_type  Input_name_n 
} 

o Outputs structure (CI value, warning, fault, trigger_output) 
{ 
data_type  Output_name_1 
… 
data_type  Output_name_n 
} 

o Parameters structure (Parameters, threshold, limit) 
{ 
data_type  Parameter_name_1 
… 
data_type  Parameter_name_n 
} 

o Data record structure (definition of the single record of the data in record and overview files) 
{ 
Datenum  timestamp 
data_type  Record_item _1 
… 
data_type  Record_item _n 
} 

● Condition indicator definition – defines a set of the monitored functions used in the mechatronic system. 
Each used component represents a record in ‘system_description’ file 

o Condition indicator ID – unique ID in the system individually assigned by the system. It links received 
data from condition indicator in Layer 1 with proper record directory in Layer 3. 

o Component type – defines condition indicator type ID in BB3 components library. 
o Node address – serves for identification which node is monitored. 
o User description – allows the user to add his own additional information. 

 
● Time stamp – MATLAB ’datenum’ time format is used. 
● Service_record 

o Node ID 
o Time stamp 
o FRU ID (Field Replaceable Unit ID) 
o User description 

 
● Data exchange format for CI. Data communication between Layers 1 and 3 is considered primary as an 

asynchronous, because of the ratio of the communication period and control and diagnostics loop period. 
The communication frequency is much higher than the frequency of the control/diagnostic loops. It is also 
not mandatory to transfer the resulting CIs in the fixed time intervals, what is ensured by the synchronous 
type of communication. If it is necessary to use the synchronous communication as a standard in I-MECH 
topology, it is in fact also possible, but not a must. In this chapter, the communication is shown as a 



 
 Doc ID  19110501R02 

 Doc Creation Date  09 April 2018 

 Doc Revision  02 

 Doc Revision Date  26 NOVEMBER 2019 

 Doc Status  Final 

    

 

 

© 2019 ECSEL Joint Undertaking. – Print Date 00 XXX 0000 PUBLIC  Page 19 of 39 
   

 

transparent from the Layer 2 point of view, but there will always be present any device in Layer 2. Its function 
will be at least as a translator of the EtherCAT bus (from/to Layer 1) and OPC UA (to/from Layer 3). It is also 
possible in some cases to use the specialized device at Layer 2 serving as the CI processing or calculating 
node.  
A message format is defined below: 

o CI_ID – links condition indicator data to record directory, 
o Data record structure of a BB3 component. 

Note: Time stamp is not necessary to be communicated. It can be provided based on L3 system time at the 
data reception. 

 
● Process data exchange format and record structure. It is not defined in BB3. It depends on implementation in 

Layer 1 for individual devices and application. Usually the data will be transferred as data structure or array 
located in a transferred buffer. The preferred file type in Layer 3 is *.mat file. It simplifies the analysis in 
MATLAB and does not limit the data processing to this tool. The data can be converted to/read from *.mat 
file using e.g. Python. 

 
● Data directory structure defines how the condition monitoring data is organised in the Layer 3 filesystem. 

 
Figure 12: (BB3-3) Data directory structure in I-MECH Layer 3. 

 
● CI_ID directory is dedicated directory for condition indicators history records. 
● nodeID directory is a directory used for saving process data in case of offline computed condition indicators 

in L3 (Pilot 5). 
● System_description.mat file contains a list of condition indicators and other components used in all nodes of 

the mechatronics system. 
● Service_records.mat contains history of service records defined above. 
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● Overview.mat file contains the history and key information about each record of the condition indicator that is 
saved in the folder records. The structure of the overview.mat file contains the exact record identifier 
(filename – description construction of the unique record filename will be described below), a time stamp 
related to the indicator, the key indicator value or values depending on the type of the indicator and record 
status information. The key value can indicate the average value of the condition indicator (e.g. average 
position error) over the time period of the record. It can also contain the maximum and minimum value of the 
condition indicator or information about exceeding the defined thresholds. This information indicates the 
significance of the record for predictive maintenance analysis by the user or the parent system. The record 
status information item informs the user or superior system about changes made to the records (archived, 
data reduction, deleted). 

 

4.6 Example 
The requirements on communication flow will be demonstrated on an example of I2t block. 
 

 
Figure 13: An example of configuration of trigger and condition indicator. 

 
An example of trigger and condition indicator configuration is shown In the figure 13. The enable block monitors 
desired speed signal and provides enable signal to the condition indicator. The trigger detects acceleration from start 
value to end value.  Repeating acceleration of the drive can be detected in such way. The i2t condition indicator 
compute i2t value based on two phase currents of the drive for the repeating action. 
Placement of the components is supposed in L1. Both blocks require parameter setting when system is initialized. 
Inputs of these blocks are connected to process variables (desired speed to trigger, phase currents to condition 
indicator). The condition indicator provides outputs which needs to be communicated to L3 for recording. Condition 
indicator ID is one of the outputs which is necessary to add to the communication message. The output value is 
available asynchronously to the control loops periods. WR signal is generated after successful output calculation and 
update. The positive edge of WR indicates a requirement to transfer the indicator output and ID to the transmit buffer 
of the communication. 
 

Table 2: (BB3-1) Signals and parameters used in example 

Signal / Default data type Description 



 
 Doc ID  19110501R02 

 Doc Creation Date  09 April 2018 

 Doc Revision  02 

 Doc Revision Date  26 NOVEMBER 2019 

 Doc Status  Final 

    

 

 

© 2019 ECSEL Joint Undertaking. – Print Date 00 XXX 0000 PUBLIC  Page 21 of 39 
   

 

Parameter 

I2t condition indicator – input signals 

i_a double Phase A current signal of the drive 

I_b double Phase B current signal of the drive 

Enable boolean Signal enabling condition indicator calculation.  

Enable must persist high for the time defined by parameter ‘Period’ to 

calculate valid output.  

I2t condition indicator – output signals 

WR boolean Positive edge of “Write” the signal indicates valid data at condition indicator 

output. The output data have to be transferred to transmit buffer to be sent to 

layer 3 

ID long Unique identifier of the condition indicator object. Links L1 indicator and L3 

file folder with CI history records 

I2t double Output value of the condition indicator 

I2t condition indicator – parameters 

I_nom double Nominal current amplitude value for i2t algorithm 

T_s double Calculation cycle length 

Period double Monitoring period of condition indicator acquisition 

CI_ID long Unique ID of component instance in mechatronic system 

FromToRamp Trigger – input signals 

In double Triggering process variable (drive desired speed is supposed) 

FromToRamp Trigger – output signals 

Enable boolean Enable output for condition indicator calculation 

FromToRamp Trigger – parameters 

Par_StartValMin double Bottom limit of detection zone for start value of the input 

Par_StartValMax double Upper limit of detection zone for start value of the input 

Par_StartValDuration double Period of desired persisting of input signal in detection zone  

Par_SlopeMin double Bottom limit of slope zone of input signal 

Par_SlopeMax double Upper limit of slope zone of input signal 

Par_EndValMin double Bottom limit of detection zone of final value of input  

Par_EndValMax double Upper limit of detection zone of final value of input 

 

 

5 Building block 6 
Building Block 6 (self-commissioning of velocity and position control loops), can be decomposed in 4 functional 
blocks located in layer 2 and layer 3 of the I-MECH structure see figure 14. 
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Figure 14: BB6 decomposition into the I-MECH structure. 

 
The four functional blocks have been defined as follows: 

● BB6a is the automatic controller commissioning interface (Layer 3); 
● BB6b is the trajectory manager block (Layer 2); 
● BB6c is the data acquisition module (Layer 2); 
● BB6d is the system identification and tuning manager module (Layer 3). 

In order to work properly, the functional blocks of BB6 must communicate to each other. 
As general concept, the communication between layer 2 and layer 3, in the case of BB6, can be explained shown in 
Figure 15. 
 

 

Figure 15: BB6 communication flow. 
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The automatic controller commissioning interface, which is located in Layer 3, get the user desired parameters and 
send the proper setup information to the trajectory manager block (which is located in layer 2) and to the system 
identification and tuning manager module (that is located in layer 3). 
The trajectory manager block, through the drive control, make the system to perform the desired identification 
trajectories, meanwhile the data acquisition module (which stays in layer 2), acquired the signals to use for the 
system identification procedure. At the end of the excitation procedure, the data acquired from the data acquisition 
module must be sent to the system identification and tuning manager module (layer 3) in order to be analysed for 
system identification procedure and the automatic tuning of the control parameters. When the control parameters are 
ready, they must be sent in the driver in order to be used. 
 
 

5.1 Communalities in information exchange 
The pilots where BB6 should be tested are Pilot 1, Pilot 2 and Pilot 5. Due to the fact that Pilot 1 and Pilot 2 share 
the same architecture (see figure 16), BB6 is initially validated on Pilot 1 and Pilot 5. 
In all these different Pilot plants, BB6 needs to transfer the same information between the four functional blocks. 
In this chapter, the communication between layer 2 and layer 3 functional blocks is shown. 
Remark 
The measurement units of the signals, in order to comply with the BB6 work, must be in IS 
 

 

Figure 16: BB6 decomposition into the AxChange architecture of Pilot 1 and Pilot 2. 

 
BB6a - BB6b data communication 

The communication between the automatic controller commissioning interface (BB6a) and the trajectory manager block 

(BB6b) consists, at least, in the following data transfer. 

 

Table 3: From BB6a to BB6b 

Data acronym Description Type 

 

BB6a 

BB6

BB6

BB6c 
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(not mandatory) 

START Start for the autotuning procedure Boolean 

AT_TYPE Autotuning type (open-loop or closed-loop) Integer (Enumerative) 

POS_LOOP Desired position loop enable Boolean 

VEL_LOOP Desired velocity loop enable Boolean 

Trj_type Set point trajectory type Integer (Enumerative) 

Trj_ff_type Feedforward type Integer (Enumerative) 

max_pos Maximum reachable position Real 

max_vel Maximum reachable velocity Real 

max_trq Maximum reachable torque/force Real 

ff_amplitude Feedforward amplitude value Real 

 

 

From BB6b to BB6c 

Data acronym 

(not mandatory) 

Description Type 

STATUS Status of the autotuning procedure Boolean 

 

BB6c - BB6d data communication 

The communication between the data acquisition module (BB6c) and the system identification and tuning manager module 

(BB6d) consists, at least, in the following data transfer. 

 

Table 3: From BB6c to BB6d 

Data acronym 

(not mandatory) 

Description Type 

trq_ref Torque reference to the system Real [time vector] 

vel Measured velocity Real [time vector] 

position Measured position Real [time vector] 

Ts Sampling time Real 

 

 

From BB6d to BB6c 

Data acronym 

(not mandatory) 

Description Type 

- - - 

 

BB6d - DRIVE data communication 

The communication between the system identification and tuning manager module (BB6d) and the drive consists, at least, 

in the following data transfer. 

 

Table 3: From BB6d to DRIVE 

Data acronym 

(not mandatory) 

Description Type 

VEL_LOOP Desired velocity loop enable Boolean 

Kp_v Proportional velocity gain Real 

Ti_v Integral velocity time constant Real 

Td_v Derivative velocity time constant Real 

N_v Derivative velocity filter coefficient Real 
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Tt_v Tracking velocity time constant Real 

POS_LOOP Desired position loop enable Boolean 

Kp_v Proportional position gain Real 

Ti_v Integral position time constant Real 

Td_v Derivative position time constant Real 

N_v Derivative position filter coefficient Real 

Tt_v Tracking position time constant Real 

BQ1_ENABLE First biquadratic filter enable Boolean 

A_BQ1 First biquadratic filter coefficient A Real 

B_BQ1 First biquadratic filter coefficient B Real 

C_BQ1 First biquadratic filter coefficient C Real 

D_BQ1 First biquadratic filter coefficient D Real 

E_BQ1 First biquadratic filter coefficient E Real 

F_BQ1 First biquadratic filter coefficient F Real 

BQ2_ENABLE Second biquadratic filter enable Boolean 

A_BQ2 Second biquadratic filter coefficient A Real 

B_BQ2 Second biquadratic filter coefficient B Real 

C_BQ2 Second biquadratic filter coefficient C Real 

D_BQ2 Second biquadratic filter coefficient D Real 

E_BQ2 Second biquadratic filter coefficient E Real 

F_BQ2 Second biquadratic filter coefficient F Real 

BQ3_ENABLE Third biquadratic filter enable Boolean 

A_BQ3 Third biquadratic filter coefficient A Real 

B_BQ3 Third biquadratic filter coefficient B Real 

C_BQ3 Third biquadratic filter coefficient C Real 

D_BQ3 Third biquadratic filter coefficient D Real 

E_BQ3 Third biquadratic filter coefficient E Real 

F_BQ3 Third biquadratic filter coefficient F Real 

BQv_ENABLE Velocity biquadratic filter enable Boolean 

A_BQv Velocity biquadratic filter coefficient A Real 

B_BQv Velocity biquadratic filter coefficient B Real 

C_BQv Velocity biquadratic filter coefficient C Real 

D_BQv Velocity biquadratic filter coefficient D Real 

E_BQv Velocity biquadratic filter coefficient E Real 

F_BQv Velocity biquadratic filter coefficient F Real 

BQp_ENABLE Position biquadratic filter enable Boolean 

A_BQp Position biquadratic filter coefficient A Real 

B_BQp Position biquadratic filter coefficient B Real 

C_BQp Position biquadratic filter coefficient C Real 

D_BQp Position biquadratic filter coefficient D Real 

E_BQp Position biquadratic filter coefficient E Real 

F_BQp Position biquadratic filter coefficient F Real 

   

 

 

From DRIVE to BB6d 

Data acronym 

(not mandatory) 

Description Type 

- - - 
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6 Interfacing with production systems 
 

6.1 Pilot 1 (Sioux CCM) 
The Pilot 1 application has been extended with the following functionality in Layer 3: 

● Monitoring and predictive maintenance using data fusion (BB3) 
● Self-commissioning using automatic system identification (BB6) 
● High-level System Control following service oriented architecture (OPC UA) 

 
 

 
Figure 17:  Pilot 1 the generic substrate carrier (GSC) 

 
The architecture and design of this Layer 3 functionality is shown in the figure below, and further explained in section 
6.1.1. The integration of the OPC UA server is further explained in section 6.1.2. 
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Figure 18:   The AxChange server as positioned in the layered architecture. 
 
 

6.1.1 System tools for top layer interfacing + data fusion 
 
The tools for top layer interfacing and data fusion are combined into a single architectural framework, called 
AxChange. This framework serves primarily as a communication gateway between the real-time motion controller in 
Layer 2 and the various applications in the top layer of the production pyramid (Layer 3 and above). Besides that, 
this AxChange framework has been extended with the following rich functionality: 

● Automatic storing sensor and controller signals to the file system, such that historic data from multiple 
sources (data fusion) is available for algorithms such as those provided with BB3 and BB6. 

● A standard generic GUI application that is able to “read and interpret” the motion control configuration, in 
order to provide an interface to the user - all without the need of programming even a single line of code. 

● Automatic generation of interface files for various programming languages (like C#, Python, etcetera), such 
that new development test-scripts and production applications can be easily written and connected to the 
motion control platform. This has been referred to as “Engineering Programming Language” (EPL) or 
programming environment in D5.1 and D5.2 requirements. 
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An example of historic data from multiple sensors that has been recorded by AxChange is shown below. 

 
Figure 19:   Example of logged data on layer 3 in the I-MECH architecture.  
 
A screenshot of the generic GUI application, configured for Pilot 1, is shown below. 
 

 
Figure 20:   A generic GUI on layer 3 in the I-MECH architecture. 
 
An example of the Engineering Programming Language environment is shown below, in this case for the Python 
language. Note the autocomplete feature: the dropdown list that appears after entering the dot. 
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Figure 21:   Example of the Engineering programming language environment. 
 
Also interactive code documentation is included in the EPL: 
 

 
Figure 22:   Documentation example of the Engineering programming language. 
 
This EPL feature of the AxChange framework has been extensively used to test and integrate the Layer 3 
components of BB3 and BB6 with the Pilot 1. 
 

6.1.2 OPC UA service oriented architecture 
 
The architecture diagram in the introduction of this Pilot 1 chapter already explained that the OPC UA server of 
Pilot 1 has been built on top of the AxChange framework. This is also referred to as the “AxChange to OPC UA 
bridge”. Since AxChange is a multi-client framework, this OPC UA bridge can co-exist with legacy existing Layer 3 
applications. 
 

OPC UA open source tooling 
For the OPC UA server part of the bridge, OPC UA “C” version open62541 (http://open62541.org) has been chosen. 
This is an open source and free implementation of OPC UA (OPC Unified Architecture) written in the common subset 
of the C99 and C++98 languages. 

http://open62541.org/
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Next, the first OPC UA client is “FreeOpcUa Client” written in the Python language. This is a generic GUI is available 
as an open source project on GitHub. In the figure below, this GUI is shown when connected to Pilot 1. 
 

  
Figure 23:   Screenshot of a generic OPC UA client showing an I-MECH example object within the OPC UA hierarchie. 
 
Please note that the commands are all specific for Pilot 1, such as abort(), initialize(), set_velocity() and so on. Using 
the get_info() function, the state of Pilot 1 can be retrieved. 
 
Also a second OPC UA client is created, using Node-RED technology. Node-RED is a programming tool for wiring 
together hardware devices, APIs and online services in new and interesting ways. In our case, a Node-RED OPC UA 
client has been realized, and this client has been wired to a Node-RED web server. As a result, the Pilot 1 could be 
monitored and controller via a standard web browser, as shown below. 
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Figure 24:   The Pilot 1 controlled with an OPC UA connection and a generic GUI. 
 
 
 
The architecture of the entire OPC UA stack is shown in the figure on the right.  
 
The OPC UA stack has been built on top of the brownfield AxChange 
framework in Layer 2, starting with a generic AxChange client using generated 
C-code from the AxChange toolset. 
 
Then the magic starts here: The AxChange messages and commands are 
mapped on OPC UA messages and commands. At this point, some 
restrictions apply: 

● For the sake of demonstrating OPC UA, only the most relevant subset 
of the available Pilot 1 commands are mapped. With these mapping 
principles proven, it is just a matter of more engineering to apply the 
full Pilot 1 mapping to OPC UA. 

● Within the OPC UA framework, the semantics and information models 
of the messages and commands are specified in the Companion 
Specs (CS). It is up to the service provider of OPC UA to decide 
whether a dedicated “external” CS is to be adhered, or that the OPC 
UA server is compliant with one of the many publicly available “joint” 
CS (a link to this list is given below). The two most relevant joint CS 
that were considered are: 

○ OPC UA for Robotics 
○ OPC UA for Machine Vision 

However, both these joint CS didn’t represent a “perfect match”. 
Mapping of the currently available Pilot 1 commands to either one of 
these public joint CS would have required some inconvenient 
workarounds. In order to keep the demonstration on Pilot 1 to-the-
point, lean and mean, a dedicated CS has been chosen. In a 
greenfield project, one would rather select a joint CS, and start 
developing from there. 

Given the dedicated “external” CS, an open62541-based OPC UA server has 
been realized. This concludes the “OPC UA Bridge”. 
 
Finally, two independent OPC UA client applications have been connected to 
this OPC UA server. 
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● The Python “FreeOpcUa Client” just executes out-of-the-box. 
● For the web client that is based on Node-RED technology, a mapping has been “wired” from the CS 

information model to the corresponding web controls. This has resulted in an “Actions” pane and a “State” 
pane on the web GUI. As the photo shows, this web page can be viewed on any standard web browser. 

 
The list of Joint CS can be found via the following link: 
https://opcfoundation.org/developer-tools/specifications-opc-ua-information-models 

 
More generic information about OPC UA CS is provided via the following link: 
https://opcfoundation.org/about/opc-technologies/opc-ua/ua-companion-specifications/ 
 

6.2 Pilot 2 (Nexperia) 
To exploit the synergy in the I-MECH platform, Pilots 1 and 2 have joined forces to integrate the pilot applications 
using the launching version of the I-MECH platform. This 1.0 version of the I-MECH platform consists of Sioux 
CCM’s AxChange environment as depicted in Figure 18 in the preceding section. EtherCAT building blocks, 
specifically BB1 and BB5, were integrated into Pilot 2. 

 
Figure 25:   Pilot 2 before the demonstration during the face-to-face meeting in Eindhoven (11-2019). 
 
Since Pilot 2 shares the AxChange platform with Pilot 1, all “layer 3” capabilities mentioned in the previous section 
were also available to Pilot 2. Although the OPC-UA features could have been validated on Pilot 2, it was decided to 
perform the proof of concept on Pilot 1. This also holds for the functionality of BB3 and BB6, which are now 
automatically available to Pilot 2, but may have to be adapted to the specific maintenance characteristics (BB3) or 
dynamic behaviour (BB6) of Pilot 2. Pilot 2 did rely to a great extent on the service-oriented AxChange system. This 
permitted a multi-client operating mode with the following benefits: 

● A graphical user interface to inform the user about the basic status of the machine and to enable and control 
tracing features as well as operate the machine 

https://opcfoundation.org/developer-tools/specifications-opc-ua-information-models
https://opcfoundation.org/about/opc-technologies/opc-ua/ua-companion-specifications/
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● Python as an engineering programming language to define several integration, tuning, measurement and 
regression tests at a user-friendly, high, abstraction level 

 
6.3 Demonstrator 1 (J&J Vision Care) 
 
Demonstrator 1 incorporates BB3 condition monitoring to monitor and ultimately predict the health of the material 
transfer layer (Magnemotion Quickstick Linear Synchronous Motor (LSM)), the product carrier/pallet and the product 
itself (contact lenses). The condition monitoring element of the I-MECH solution as part Demonstrator 1 compliments 
elements of BB1 and BB2 in the form of smart wireless sensors, developed in partnership with TNI, which provide 
the system and carrier data required for the condition monitoring algorithm.  
As per the requirements listed in D2.3 for the J&J Vision Care material transfer layer, the following parameters were 
identified as critical for monitoring the condition of the lens transfer system Magnemotion Quickstick LSM: 

● Vibration of the carrier/pallet 
● Magnetic field strength of the LSM 
● Temperature of the lens curing tunnel  
● Light intensity in the lens curing tunnel 

 
Having developed the wireless sensing capabilities to detect the above parameters with TNI in BB1 and BB2, the 
condition monitoring algorithm was developed in partnership with ITML, the developmental work carried out by them 
is detailed in section 6.3.1. 
 
 

6.3.1 BB3 Condition monitoring algorithm for Demonstrator 1 

Dataset 

In order to develop an algorithm for the monitoring of the lens transfer system, a data rich training set was required. 
Due to the absence of data recording on the current J&J Vision Care system, an existing dataset was used for the 
baseline algorithms in order to build a model. 

For the baseline models and feature selection methods on industrial sensor data failure prediction, the SECOM 

dataset
[1]

 was used. The dataset contains Data from a semi-conductor manufacturing process. A complex modern 

semi-conductor manufacturing process is normally under consistent surveillance via the monitoring of 
signals/variables collected from sensors and or process measurement points. The dataset explored, in this case, 
represents a selection of such features where each example represents a single production entity with associated 
measured features and the line testing labels represent a simple pass/fail yield for in house. 

•    Number of Instances: 1567 (1463 pass/ 104 fail) 

•    Number of Attributes: 591 

 [1] https://archive.ics.uci.edu/ml/datasets/secom 

Feature Selection and Classification 

During the data normalization it was found that the range of the data was recorded from 591 sensors. For the feature 
selection, the Variance Threshold method was used to remove features with variation below a certain cutoff (based 
on the notion that the features that do not vary much within themselves carry low predictive value). The k-best 
features were selected using chi square (χ

2
), mutual information and principal components analysis (PCA). 

For binary classification, 8 algorithms were tested, using Synthetic Minority Over-sampling Technique on the 
SECOM unbalanced dataset (1463 pass/ 104 fail) 

https://archive.ics.uci.edu/ml/datasets/secom
https://archive.ics.uci.edu/ml/datasets/secom
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For one-class classification, the training was on the pass samples and the prediction on the fail instances using 
anomaly detection. Six algorithms were tested.

 

Figure 26: Feature selection techniques (F1 scoring on prediction=fail) 

During the data normalization it was found that the range of the data was recorded from 591 sensors. For the feature 
selection, the Variance Threshold method was used to remove features with variation below a certain cutoff (based 
on the notion that the features that do not vary much within themselves carry low predictive value). The k-best 
features were selected using chi square (χ

2
), mutual information and principal components analysis (PCA). 

For binary classification the following algorithms were explored: 

•    Nearest Neighbors 

•    Linear SVM 

•    RBF SVM 

•    Gaussian Process   

•    Decision Tree 

•    Random Forest 

•    Neural Net 

•    AdaBoost 

•    Naïve Bayes 
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Figure 27: Binary classification (chi
2
) 

For the one-class classification the following algorithms were explored: 

•    Robust covariance  

•    One-Class SVM poly   

•    One-Class SVM rbf  

•    One-Class SVM sigmoid 

•    Isolation Forest   

•    Local Outlier Factor  

 

Figure 28: One-class classification(chi
2
) 
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Figure 29: One-class classification (PCA) 

Conclusions and lessons learned 

Traditionally, the ML approach requires large data. For this dataset. the large number of features (591) compared to 
the small number of samples (1567) makes this an inherently difficult task. Feature selection is the best bet. In such 
cases, insight on the features themselves may be helpful for feature engineering. 

Moreover, the fail samples are too few (104) to create an accurate model. This is a real-world problem that requires 
to look at heuristics methods to perhaps add to the prediction algorithms or create synthetic data. 

As for the anomaly detection, the pass samples are homogeneous while the fail samples are heterogeneous. This is 
to be expected in industrial data with low number of fail samples. 

6.3.2 Production system integration Layer 3 
 
For Demonstrator 1, all condition monitoring and data analytics will be located in a J&J secure Microsoft Azure cloud 
server. The sensor data recorded and condensed by the embedded wireless sensor board is communicated to Azure 
via an edge gateway with a J&J secure image, this allows the bypassing of the system PLC for direct data transfer to 
the cloud for efficient data transfer. The sensor data is then contextualised in Azure using the Magnemotion PLC 
data for the LSM layer, providing carrier position and velocity data. The PLC data is communicated to Azure using 
OPC UA/ Automation ML communication protocols. The data transfer system is visually represented in Figure 30.  
Once the data is contextualised in Azure it is then presented to enterprise systems for visualisation in Power BI and 
also fed into machine learning algorithms developed by the business for systems and yield optimisation. The data 
path within Azure is illustrated in Figure 31.   
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Figure 30: Sensor and PLC data communication to Layer 3 cloud services 

 

 
Figure 31: Data processing within Layer 3 cloud service 

 
 

6.4 Designing tools for data fusion from various types of sensors 
 
Introduction 
In the framework of I-MECH, a draft version of a Data Fusion Bus has been deployed by ITML in order to fuse data 
from various data sources and sensors. This technology combines the features and capabilities of several big data 
applications and utilities within a single platform. 
The key capabilities of DFB are: 

● Real-time monitoring and event-processing, semantic fusion of events not coinciding in time.  
● Data aggregation from heterogeneous data sources and data stores.  
● Real time analytics offering ready to use Machine Learning algorithms for classification, clustering, 

regression, anomaly detection. 
● An extendable and highly customizable User Interface for Data Analytics, manipulation and filtering. The UI 

also includes functionality for managing the platform. 
● Web Services for exploiting the platform outputs for Decision Support.  
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Figure 32: A Data Analytics Solution 
 
Architecture 
The DFB architecture is depicted in the following figure: 
 

 
Figure 33: DFB Architecture 

 
The main building blocks of DFB are: 
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● Support for multiple data streams and data stores: Readily available interfaces are in place that allow for 
data acquisition for all well-established RDBMSs, data streams (using MQTT), NoSQL databases, shared 
file systems (HDFS Hadoop). This functionality is supported by Kafka Connect. 

● The Streaming Core of the platform is Apache Kafka. DFB relies on Kafka ‘s distributed messaging system 
to provide high fault-tolerance (Resiliency to node failures and support of automatic recovery) and elasticity - 
high scalability. 

● Internal Store and Search Engine: When persistence of data within the platform is required, the Elastic 
stack (Elasticsearch and Logstash) is utilized. Data may flow either through Kafka connectors (usually in 
cases of stream data) or may be directly imported to Elasticsearch. Elasticsearch also provides provide high 
fault-tolerance and scalability. 

● AAA:  Authentication, authorization and accounting mechanisms that enhance the security of the platform. 
Moreover, the security mechanism includes data encryption through TLS and certificates. 

● Data Analytics: DFB supports batch processing and stream processing with Apache Spark, Kafka Streams & 
KSQL, Spark Streaming and python scikit-learn.  

● DFB Core: The data flow container is responsible for providing business logic to DFB and managing all the 
data flows. It is a custom web application (based on PHP Laravel and Redis). DFB also exposes a 
configurable set of web services for exporting DFB output providing Decision Support to external systems. 

● UI: Provides the human interface of DFB Core. Customizable visualization functionality is provided by 
integrating Grafana. 

 
The aforementioned framework has been deployed during the last months; the plan is to have it connected to the 
ecosystem of I-MECH, in order to fuse data from various data sources and sensors focusing on the Johnson and 
Johnson use case; other I-MECH pilots and demonstrators will be considered as well. 
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