

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 1 of 67

Workpackage Deliverable ID

WP4, Control Layer Dev Final Report D4.9 Control Layer Dev Final Report

Summary

The document provides a comprehensive description of Control Layer building blocks, developed in the Work-
package 4, including implementation aspects on relevant pilot applications, use cases and demonstrators.
In particular, the document is focusing on the description of the BB7 about “Vibration control in mechanically
compliant systems”, BB8 about “Robust motion control strategies”, BB9 concerning “Iterative and repetitive control
methods” and BB11 “Advanced motion control algorithms and software for predictable multi-many core platforms”.
The purpose of the document is to describe more in detail how the developed technologies fit with the requirements
of the several mechatronics applications represented in pilots, use cases and demonstrators. The document provides
a general technical introduction of the control strategy. This part of the document is based on the more complete
description that have been released with the deliverables of the specific building-block (D4.3, D4.4, D.4.5 and D.4.6).
In addition, and more in detail, the document provides the information about the architecture of the system, i.e.
describing input and output of each block, in order to allow the possibility to apply the technology also to an extended
range of applications.

Author Davide Colombo

Keywords:
Building Blocks, Vibration control, Robust motion control, Iterative control, repetitive control, motion, multi-
core, model-based design, control architecture, industrial application, tracking performance, accuracy,
noise reduction.

Coordinator Sioux CCM

Tel. 0031 (0)40.263.5000

E-Mail info@i-mech.eu
Internet www.i-mech.eu

Ref. Ares(2020)494103 - 27/01/2020

mailto:info@i-mech.eu
http://www.i-mech.eu/

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 2 of 67

Table of contents

1 Introduction 10

2 System Behavior Design and Interfaces 12

2.1 Typical building block component 12

2.2 How to operate with blocks 13

2.3 Communication Interfaces 13

3 BB7 - Task 4.4 Vibration control in mechanically compliant systems 14

3.1 Functionalities 14

3.1.1 Anti-sway techniques for overhead cranes - Input shaping techniques (UNIBS/GEF) 14

3.1.1.1 General description - algorithm theory 14

3.1.1.2 Implementation in Matlab-Simulink C 14

3.1.1.3 Inputs, outputs, parameters, constants 15

3.1.1.4 Validation in MIL, PIL, HIL 15

3.1.2 Anti-sway techniques for overhead cranes - Input/Output inversion techniques (UNIBS/GEF) 16

3.1.2.1 General description - algorithm theory 16

3.1.2.2 Implementation in Matlab-Simulink C 16

3.1.2.3 Input, output, parameters, constants 17

3.1.2.4 Validation in MIL, PIL, HIL 17

3.1.3 Anti-sway techniques for overhead cranes - MPC based techniques (UNIBS/GEF) 18

3.1.3.1 General description - algorithm theory 18

3.1.3.2 Implementation in Matlab-Simulink C 19

3.1.3.3 Input output parameters, constants 20

3.1.3.4 Validation in MIL, PIL, HIL 20

3.1.4 New design methods for Zero Vibration input shapers (ZAPUNI) 21

3.1.4.1 General description - algorithm theory 21

3.1.4.1.1 Generic shaping/smoothing filter design tools 21

3.1.4.1.2 Optimal input shaping for gantry cranes systems 24

3.1.4.2 Implementation in Matlab-Simulink C 24

3.1.4.3 Inputs, outputs, parameters, constants 25

3.1.4.4 Validation in MIL, PIL, HIL 26

3.1.5 Acceleration Feedback (FAG/TEK) 26

3.1.5.1 General description - algorithm theory 26

3.1.5.2 Implementation in Matlab-Simulink C 26

3.1.5.3 Inputs, outputs, parameters, constants 27

3.1.5.4 Validation in MIL, PIL, HIL 27

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 3 of 67

3.1.6 H-infinity optimization approach (ZAPUNI) 29

3.1.6.1 General description - algorithm theory 29

3.1.6.2 Implementation in Matlab-Simulink C 30

3.1.6.3 Inputs, outputs, parameters, constants 30

3.1.6.4 Validation in MIL, PIL, HIL 31

3.2 Implementation aspects 32

3.2.1 Use Case 1.1 32

3.2.1.1 Anti-sway techniques for overhead cranes - Input shaping techniques (UNIBS/GEF) 32

3.2.1.2 Anti-sway techniques for overhead cranes - Input/Output inversion techniques (UNIBS/GEF) 32

3.2.1.3 Anti-sway techniques for overhead cranes - MPC Based techniques (UNIBS/GEF) 32

3.2.2 Use Case 1.2 32

3.2.2.1 Acceleration Feedback (FAG/TEK) 32

3.2.3 Use Case 1.3 32

3.2.3.1 New design methods for Zero Vibration input shapers (ZAPUNI) 32

3.2.3.2 H-infinity optimization approach (ZAPUNI) 32

4 BB8 - Task 4.5 Robust motion control strategies 34

4.1 Functionalities 34

4.1.1 Data-driven system identification 34

4.1.1.1 Open loop vs. closed loop measurement 34

4.1.1.2 Excitation signal 35

4.1.1.3 Averaging 35

4.1.1.4 Implementation (Matlab function) 35

4.1.1.5 Coupling analyses of the basis of measured FRF 36

4.1.1.6 Implementation (Matlab function) 37

4.1.2 Multivariable controller design 37

4.1.2.1 Decoupling 38

4.1.2.2 Sequential loop closing 38

4.1.2.3 Factorized Nyquist 39

4.1.2.4 Robust model-based controller synthesis 41

4.1.3 Beyond state-of-the-art 42

4.1.3.1 Data-driven online feedforward parameter tuning 42

4.1.3.2 Implementation 43

4.1.3.3 PI(D) controller tuning using H_infinity regions approach 43

4.1.3.4 Implementation 44

4.2 Implementation aspects 45

4.2.1 Pilot 1 45

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 4 of 67

4.2.2 Pilot 2 45

5 BB9 - Task 4.6 Iterative and repetitive control methods 46

5.1 Functionalities 46

5.1.1 Repetitive Control for repetitive disturbance compensation (UNIBS/GEF) 46

5.1.1.1 General description - algorithm theory 46

5.1.1.2 Implementation in Matlab-Simulink C 46

5.1.1.3 Inputs, outputs, parameters, constants 46

5.1.1.4 Validation in MIL, PIL, HIL 47

5.1.2 Iterative learning Control for repetitive disturbance compensation (UNIBS/GEF) 48

5.1.2.1 General description - algorithm theory 48

5.1.2.2 Implementation in Matlab-Simulink C 49

5.1.2.3 Inputs, outputs, parameters, constants 49

5.1.2.3.1 Inputs, outputs, parameters and constants of the ILC technique. 49

5.1.2.3.2 Validation in MIL, PIL, HIL 49

5.1.3 Anticipatory ILC (TEK) 50

5.1.3.1 General description - algorithm theory 50

5.1.3.2 Implementation in Matlab-Simulink C 50

5.1.3.3 Inputs, outputs, parameters, constants 51

5.1.3.4 Validation in MIL, PIL, HIL 51

5.1.4 PI(D) Repetitive controller (ZAPUNI) 53

5.1.4.1 Implementation aspects 54

5.1.5 Model-Based ILC strategies (TUE) 54

5.2 Implementation aspects 56

5.2.1 Pilot 1 56

5.2.2 Pilot 2 56

5.2.3 Use Case 1.1 56

5.2.3.1 Repetitive Control for repetitive disturbance compensation (UNIBS/GEF) 57

5.2.3.2 Iterative Learning Control for repetitive disturbance compensation (UNIBS/GEF) 57

5.2.4 Use Case 1.2 57

5.2.4.1 Anticipatory ILC (FAG/TEK) 57

6 BB11 - Task 4.7 Advanced motion control algorithms and software for predictable multi-many core platforms 58

6.1 FPGA platform 58

6.1.1 Functionalities 58

6.1.1.1 PIL Simulations in Simulink 59

6.1.1.1.1 Code generation report and code profiling 60

6.1.1.1.2 Performing PIL simulation 60

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 5 of 67

6.1.1.1.3 PIL simulation for a part of the model 60

6.1.1.2 HIL Simulations in Simulink 60

6.1.1.2.1 External mode 61

6.1.1.2.2 Performing external mode simulation 61

6.2 Implementation aspects 61

6.2.1 Pilot 1 61

6.3 COTS platform 62

6.3.1 Functionalities 62

6.3.2 Implementation aspects 63

7 Conclusions 65

7.1 General conclusion remarks 65

7.2 Contribution beyond the state of the art 65

7.3 Dissemination and exploitation 65

8 Bibliography 66

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 6 of 67

Table of figures

Figure 1: Building Blocks and Layers architecture .. 11
Figure 2: Control BBs interconnection ... 12
Figure 3: Structure of the algorithmic control BB (BB7, BB8, BB9) ... 12
Figure 4: Input Shaping Control ... 14
Figure 5: Input Shaping Simulink Blocks ... 15
Figure 6: Input-Shaping MIL validation example ... 16
Figure 7: Input/Output inversion control. ... 16
Figure 8: Input/Output Inversion Simulink Block. ... 17
Figure 9: Input-Output inversion MIL validation example .. 18
Figure 10: Model predictive control scheme. ... 18
Figure 11: MPC-PID control scheme. .. 19
Figure 12: MPC Techniques Simulink Blocks .. 19
Figure 13: MPC technique MIL validation example ... 21
Figure 14: Possible ways of shaping filter integration, a) reference command shaper, b) feedback command shaper . 22
Figure 15: Zero Vibration Filter Design Tool, GUI for the shaping filter design methods .. 22
Figure 16: Optimal control for gantry crane systems – principle of operation ... 24
Figure 17: Shaping Filter Simulink Block. .. 25
Figure 18: Acceleration Feedback control scheme. .. 26
Figure 19: Acceleration Feedback Simulink Block. ... 27
Figure 20: Acceleration Feedback MIL validation example. .. 28
Figure 21: Acceleration Feedback MIL detailed validation example. .. 29
Figure 22: Weighted H-infinity optimization for the synthesis of both feedback control and auxiliary acceleration
feedback .. 30
Figure 23: Generic closed-loop identification control scheme. .. 34
Figure 24: Original measured signal (gray) and three separate frames where a window is applied (blue). 35
Figure 25: MIMO controller design steps. .. 37
Figure 26: Decoupled MIMO control scheme. ... 38
Figure 27: Non-decoupled MIMO control scheme. .. 39
Figure 28: Performance Variables and Generalized Disturbances scheme. .. 41
Figure 29: Data driven online feedforward parameter tuning control scheme. ... 42
Figure 30: Transfer function representation on a standard closed loop control scheme. ... 44
Figure 31: Simple GUI for the implemented H-infinity design method. ... 45
Figure 32: Repetitive control scheme. ... 46
Figure 33: Repetitive control Simulink Block. .. 46
Figure 34: RC MIL validation example. ... 48
Figure 35: Iterative learning control scheme. .. 48
Figure 36: Iterative learning control Simulink Block... 49
Figure 37: ILC MIL validation example. ... 50
Figure 38: Anticipatory ILC Simulink Block. ... 50
Figure 39: Anticipatory ILC MIL validation example. ... 52
Figure 40: Anticipatory ILC MIL expanded validation example. .. 53
Figure 41: Assumed repetitive control setup, P – controlled plant, C – feedback compensator, R – plug-in repetitive
control block, Q – robustness filter, T – period of repetitive disturbance in r/d ... 54
Figure 42: Generic closed-loop control scheme. ... 55
Figure 43: Generic repetitive task set point signal... 55
Figure 44: Model-based design methodology adopted for BB11. ... 59
Figure 45: The integration steps of BB11 with Pilot 1. .. 62
Figure 46: Hypervisor technology scheme. ... 63
Figure 47: First configuration of the considered hypervisor technology. ... 64

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 7 of 67

Figure 48: Second configuration of the considered hypervisor technology. .. 64

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 8 of 67

(Open) Issues & Actions
Open Issues (and related actions) that need central attention shall be part of a file called “IAL - Issues & Action List –
Partners” which is can be found in the Goolge Drive Partner Zone.

ID Description Due date Owner IAL ID

Document Revision History

Revisio
n

Status Date Author Description of changes IAL ID / Review ID

R01 Draft 22-JUL-19 D. Colombo (GEF)
L. Simoni (UNIBS)
M. Armendia (TEK)
M. Goubej (ZAPUNI)

Initiate

R02 Draft 23-DEC-19 N. Mooren (TUE) Additional contribution

R03 Draft 07-JAN-20 D. Colombo, P.
Grande (GEF)

Revision before internal review

R04 Final 16-JAN-20 D. Colombo, P.
Grande (GEF)

Final Revision

Contributors

Revision Affiliation Contributor Description of work

R01 GEF D. Colombo, P. Grande Architecture of document, general introduction.
Contributions in description of Task 4.4 BB7 and Task 4.6
BB9

 UNIBS L. Simoni Description of the implemented strategy on Task 4.4 BB7
and Task 4.6

 TEK M. Armendia BB7 Task 4.4 and Task 4.6

 ZAPUNI M. Goubej Description of controls task 4.4 and task 4.6

R02 TUE N. Mooren Description of controls task 4.5 and BB8

R03 GEF, UNIBS,
TUE

D. Colombo, P. Grande, A.
Visioli, L.Simoni, D.Goswami,
N. Mooren

Internal Revision

R04 GEF D. Colombo, P. Grande Final Revision

Document control
 Status Draft Draft Draft Final

 Revision 01 02 03 04

Reviewer Name Role Selection

Arend-Jan
Beltman

Coordinator X

Davide Colombo WP4 leader X X X X

https://docs.google.com/spreadsheets/d/1hoKPDAwRMAkZV1SAqEIl38aaFtQJfwU2vPkZ7PwmyHo/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1hoKPDAwRMAkZV1SAqEIl38aaFtQJfwU2vPkZ7PwmyHo/edit?usp=sharing
https://drive.google.com/drive/folders/0B6ZxtcnW8nzFcVJWYVh5Zld4OEE?usp=sharing

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 9 of 67

File Locations
Via URL with a name that is equal to the document ID, you shall introduce a link to the location (either in Partner Zone
or CIRCABC)

URL Filename Date

 dd-MMM-
yyyy

Literature

Ref Name Publisher Year

[1] D4.3 Vibration control module (BB 7) 2019

[2] D4.4 Robust multivariable control module (BB 8) 2019

[3] D4.5 Iterative and repetitive control module (BB
9)

 2019

[4] D4.6 Advanced software support for predictable
motion control on multi/many-core platforms

 2019

[5] Full Bibliography in Section 8.

Abbreviations & Definitions

Abbreviation Description

BB Building Block

WP Work Package

Definition Description

https://drive.google.com/drive/folders/0B6ZxtcnW8nzFcVJWYVh5Zld4OEE?usp=sharing
https://circabc.europa.eu/faces/jsp/extension/wai/navigation/container.jsp?FormPrincipal:_idcl=FormPrincipal:left-menu-ig-link&FormPrincipal_SUBMIT=1&javax.faces.ViewState=Fdhz%2FRgtEqMdSn%2Bwlnn1X0Je9yHRvQ4TNblptsQwemsgrKlxoh79VNIzc3HrJejwzHAtaQW8Rxkl0N8ED%2BS5CkyxsF9WfZVrDgZ9vUa6vjbdkrjC%2Fy%2BxQMQKmzKtYFvLTDjY%2BUXbwy%2FpYqopzXyNbO5u3yi33goxwAQoag%3D%3D

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 10 of 67

1 Introduction

This document provides a comprehensive description of the Building Blocks developed in the framework of the Work
Package 4 (Control Layer design and development). In this document, the Control Layer Building Blocks (BB7, BB8,
BB9, and BB11) are shown and their usage is briefly explained. Furthermore, some implementation aspects of the
Control Layer Building Blocks on relevant pilots, use cases and demonstrators’ applications are provided.

This document is not a complete and detailed documentation of the Control Layer Building Blocks, but, on the contrary,
it has the aim to be a general explanation on how the Control Layer Building Blocks can be used and on how they can
be implemented in some specific environments (that are the I-MECH Pilots, Use Cases and Demonstrators).
For a detailed explanation of the algorithms used inside the Control Layer Building Blocks and of the methodologies
related to the usage of the Control Layer Building Blocks, or some parts of them, the reader has to consider the Building
Blocks documentation and the specific deliverables of the building blocks.

The document provides a description of how the Building Blocks developed in the framework of the Work Package 4
(in the first two and a half year of the I-MECH project) can be used.
The Control Layer Building Blocks developed in the framework of WP4 and considered in this deliverable are:

● BB7 - Vibration control module
● BB8 - Robust model-based multivariable control
● BB9 - Iterative and repetitive control module
● BB11 - RTOS for multi-many core platform.

These Building Blocks are strictly connected to the tasks in which they have been developed, that are:

● BB7 - Task 4.4
● BB8 - Task 4.5
● BB9 - Task 4.6
● BB11 - Task 4.7

The Control Layer Building Blocks are mainly located in Layer 2 of the I-MECH platform (see Figure 1) and they can
be used separately, or together, in order to obtain an enhanced performance of the mechatronic systems to control
(namely the controlled plant).

In this document, a generic description of how the Control Layer Building Blocks have been developed is shown, and
a brief description of the methodologies that have been adopted to implement the Control Layer Building Blocks is
provided. Furthermore, a short summary of the usage of these Building Blocks is reported.
For all the Control Layer Building Block, a description of the used implementation method is given, followed by the
description of the inputs, the outputs, the constants and the parameters that are mandatory to use the different parts
of the Building Blocks.

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 11 of 67

Figure 1: Building Blocks and Layers architecture

The steps that have been followed to develop the Control Layer Building Block (namely, MIL, PIL, SIL, HIL) before to
test it on the Pilots, Use Cases and Demonstrators are then described.

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 12 of 67

2 System Behavior Design and Interfaces

The Building Blocks developed in the framework of the Work Package 4 are located in Layer 2 of the I-MECH
architecture. It means that the System Behaviour Layer, that is the Layer 3 of the I-MECH architecture, is not involved
in the BBs developed inside the Work Package 4. Nonetheless, the BBs of the WP4 have been developed in order to
be integrated inside the I-MECH architecture, and it means that they comply with the architecture and the interfaces
described in deliverable D5.5.

2.1 Typical building block component

In this deliverable, the behavior of the Building Blocks related to the Work Package 4 of the I-MECH project is explained,
together with the interfaces that allow the Building Blocks to be configured and used properly.

Figure 2: Control BBs interconnection

Figure 2 shows the interconnection between the control Building Blocks, where the Control BB Framework is
represented by BB11.

Figure 3: Structure of the algorithmic control BB (BB7, BB8, BB9)

With the exception of the BB11, the generic structure of the Building Blocks developed within the Work Package 4 is
shown in Figure 3, where it is possible to see that the generic Building Block has 3 inputs data types (Enable/Trigger,
Input Data, and Parameters) and 1 output data type (Output Data).

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 13 of 67

2.2 How to operate with blocks

The Building Blocks have been designed as standalone MATLAB/Simulink blocks, it means that each block can be used
separately from the others. They can be translated into C/C++ functions or PLC standard function using
MATLAB/Simulink coders. Thus, they can be used both in greenfield and brownfield contexts. The user can modify the
I/O structure in Simulink according to implementation needs, nevertheless, it is strongly suggested to keep the developed
I/O structure and to use interface blocks to adapt the needed structure to the developed ones.
In any case, a user’s guide will be available for every BBs. This guarantees the interoperability of the Building Blocks.

2.3 Communication Interfaces

The Building Blocks developed in the framework of the Work Package 4 are located in Layer 2 of the I-MECH
architecture, so, they can communicate between all the Building Blocks of the same layer. The communication
between layers is described in Deliverable 5.5 and the BBs have been built in order to comply with the interfaces
implemented in the I-MECH platform.

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 14 of 67

3 BB7 - Task 4.4 Vibration control in mechanically compliant
systems

3.1 Functionalities

3.1.1 Anti-sway techniques for overhead cranes - Input shaping techniques (UNIBS/GEF)

3.1.1.1 General description - algorithm theory
One of the most known open loop techniques for the anti-sway control of oscillation systems is called Input-Shaping
(IS).
For the case of overhead cranes, IS control can be schematized as shown in Figure 4.

Figure 4: Input Shaping Control

Basically, the Input Shaping technique consists in a proper modification of a generic set point in order to obtain zero
oscillations of the load.
In the framework of the I-MECH project, seven different Input Shaping techniques have been implemented and tested.
The seven different Input Shaping techniques are:

● ZV - zero vibrations,
● ZVD - zero vibrations and derivative,
● ZVDD - zero vibrations and second derivative,
● EI - extra insensitive,
● EI2H - extra insensitive 2 humps,
● UM - unitary module,
● PS - partial sum.

Each technique differs from the others in the degree of robustness and in the velocity of application.
It is important to remark that in the case of multiple pendulums the Input Shaping blocks can be connected in series to
take into account all the different oscillation modes of the system.

3.1.1.2 Implementation in Matlab-Simulink C

The different Input-Shaping techniques have been implemented in Matlab/Simulink (see Figure 5).

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 15 of 67

Figure 5: Input Shaping Simulink Blocks

After the validation the blocks have been exported in FMU in order to be used in different simulation environments.

3.1.1.3 Inputs, outputs, parameters, constants

All the Input Shaping techniques share the same layout.
In this section a brief description on inputs, outputs, parameters and constants is shown. More details are available in
the function help.

Input Shaping Blocks

Inputs, Parameters and Constants

Parameter Description

T1 Undamped period of the system [s]

xi_1 Damping coefficient

Input Input set point signal

Outputs

Parameter Description

Output Output set point signal

3.1.1.4 Validation in MIL, PIL, HIL
The validation of the 7 Input Shaping techniques has been done in MIL by using Matlab/Simulink.
Then, the techniques have been validated by using Simulink-Multibody and in co-simulation Simulink-Amesim.
In Figure 6 the example of the Simulink scheme for the MIL validation of the Input Shaping ZV technique is shown.

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 16 of 67

Figure 6: Input-Shaping MIL validation example

Each Input Shaping techniques have then been validated in PIL and HIL on the Use Case 1.1; details of the validation
can be found in Deliverable 6.5.

3.1.2 Anti-sway techniques for overhead cranes - Input/Output inversion techniques
(UNIBS/GEF)

3.1.2.1 General description - algorithm theory

An alternative open loop method for the anti-sway control of overhead crane is the so-called Input/Output Inversion
technique, described in [1].
Basically, the Input/Output Inversion technique consists in the proper computation of a set point, based on the model
inversion, in order to obtain zero oscillations of the load (see Figure 7). Differently from the IS technique, in the
Input/Output Inversion technique the computation of the proper set point is based on the inversion of the model
between the cart position and the load position.

Figure 7: Input/Output inversion control.

3.1.2.2 Implementation in Matlab-Simulink C

The different Input/Output inversion techniques has been implemented in Matlab/Simulink (see Figure 8).

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 17 of 67

Figure 8: Input/Output Inversion Simulink Block.

After the validation the block have been exported in FMU in order to be used in different simulation environments.

3.1.2.3 Input, output, parameters, constants

In this section a brief description on inputs, outputs, parameters and constants is shown. More details are available in
the function help..

Input/Output Inversion Blocks

Inputs, Parameters and Constants

Parameter Description

Button Start and stop of the motion [0-1]

Setpoint velocity Maximum velocity setpoint

transition time Maximum transition time to reach the setpoint velocity [s]

Outputs

Parameter Description

reference velocity Output reference velocity

t I/O inversion time [s] for debug

3.1.2.4 Validation in MIL, PIL, HIL

The validation of the Input/Output Inversion technique have been done in MIL by using Matlab/Simulink.
Then, the technique has been validated by using Simulink-Multibody and in co-simulation Simulink-Amesim.
Figure 9 shows the example of the Simulink scheme for the MIL validation of the Input/Output Inversion technique.

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 18 of 67

Figure 9: Input-Output inversion MIL validation example

The Input/Output Inversion technique has then validated in PIL and HIL on the Use Case 1.1.

3.1.3 Anti-sway techniques for overhead cranes - MPC based techniques (UNIBS/GEF)

3.1.3.1 General description - algorithm theory

Advanced closed loop methods for the anti-sway control of overhead crane are the so-called MPC based techniques,
which can take into account the system constraints.
Standard linear MPC can give good results when applied to cranes, by taking into account the presence of the operator,
as shown in [2].
A varying cable length, which is a common maneuver for industrial cranes, requires the development of more complex
methods (see [3]).

Figure 10: Model predictive control scheme.

Depending on the system to be controlled, (e.g. if a velocity control loop is already in place and the controller tuned),
two different approaches can be used: controlling the crane by acting directly on the torque of the motor (see Figure
10) or by setting the cart velocity as the input of the system, relying on a closed velocity control loop for the trajectory
tracking of the cart [4] (see Figure 11).

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 19 of 67

Figure 11: MPC-PID control scheme.

3.1.3.2 Implementation in Matlab-Simulink C

The different MPC techniques have been implemented in Matlab/Simulink, Figure 12 shows the Simulink blocks of the
developed MPC based techniques.

Figure 12: MPC Techniques Simulink Blocks

The blocks shown in Figure 12 are the linear and nonlinear MPC controllers respectively. After the validation the block
have been exported in FMU in order to be used in different simulation environments.

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 20 of 67

3.1.3.3 Input output parameters, constants

In this section a brief description on inputs, outputs, parameters and constants is shown. More details are available in
the function help.

Linear MPC Block

Inputs, Parameters and Constants

Parameter Description

ST Control sampling period

SP Setpoint

x States of the system

Outputs

Parameter Description

u torque on the motor

vel velocity of the cart, in case of MPC+PID approach

Nonlinear MPC Block

Inputs, Parameters and Constants

Parameter Description

last MV last MV of the block

ref Setpoint

x States of the system

params parameters (e.g. control sampling time)

Outputs

Parameter Description

MV torque on the motor

3.1.3.4 Validation in MIL, PIL, HIL

The validation of the MPC technique has been done in MIL by using Matlab/Simulink. Then, the technique has been
validated by using Simulink-Multibody and in co-simulation Simulink-Amesim.
In Figure 13 the example of the Simulink scheme for the MIL validation of the Input/Output Inversion technique is
shown.

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 21 of 67

Figure 13: MPC technique MIL validation example

The MPC technique has then been validated in PIL and HIL on the Use Case 1.1.

3.1.4 New design methods for Zero Vibration input shapers (ZAPUNI)

3.1.4.1 General description - algorithm theory

3.1.4.1.1 Generic shaping/smoothing filter design tools

New design methods for optimal synthesis of input shaping filters were developed by ZAPUNI and implemented in a
simple graphical user interface. It allows formulation of various design constraints, validation of important filter
characteristics and combination of multiple filters using discrete convolution. Result of the design can be then exported
to a .csv file in the form of filter impulse function or a C-code can be automatically generated from the functional block
in the Matlab/Simulink environment. This allows its utilization in arbitrary real-time control or signal-processing platform.

The developed methods interfaced through the GUI can serve for the design of generic FIR type discrete-time filter with
the transfer function in the Z-transform given in as:

where t denotes integer multiples of the sampling period Ts and the filter dynamics fully determined by its impulse
function

The developed SW deals with the tasks of design constraints specification, shaping filter synthesis and implementation.
It relies on the Zero Vibration damping techniques which can be used to eliminate or substantially reduce unwanted
residual oscillations arising during highly-dynamic maneuvers with mechanically compliant systems. The shaping filter
can be implemented as a reference shaping feedforward filter, or embedded in the feedback loop as shown in Figure
14.

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 22 of 67

Figure 14: Possible ways of shaping filter integration, a) reference command shaper, b) feedback command shaper

The main advantage of Zero Vibration shapers is that they can be designed using a limited information about the plant
dynamics model. Only approximate location of the resonance frequencies is necessary compared to full plant model
usually required in traditional feedforward control strategies. Robust design methods are embedded to allow the user to
directly specify the level of tolerance to modelling errors and choose a suitable robustness vs induced delay tradeoff.

Figure 15: Zero Vibration Filter Design Tool, GUI for the shaping filter design methods

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 23 of 67

The graphical user interface (see Figure 15) consists of three main cooperating modules:
● Graphical interface – serves for definition of design constraints, results validation, import and export of user

data
● Computation core – a set of design methods realizing the shaping filter synthesis algorithms based on the

user-specified design constraints
● Functional block for a real-time implementation – generic discrete FIR filter in the form suitable for

implementation in arbitrary sampled data control system

The graphical user interface was designed at ZAPUNI in former R&D projects. The application was substantially
extended in terms of I-MECH by adding new optimization-based design methods allowing to synthesize new classes
of input shaping filters. The common denominator of the implemented method is a robust design approach allowing
the user to specify a desired level of tolerance to modelling errors. This is the main difference to conventional shaping
filters known from the literature which typically do not allow fine-tuning of the filter characteristics. The implemented
methods cover most of the known shapers for single resonance systems as a special case.

The list of implemented methods:

● ZV, ZVD, ZVDD, EI, THEI, MISZV – standard algorithms known from the literature for single dominant
resonance systems

● ZV4IS – novel method developed at ZAPUNI allowing a generic parameterization of all input shaping filters for
a single resonance system with a minimum nonredundant parameterization using two user-specified design
parameters with a clear physical meaning. All the conventional filters listed above are particular cases of the
given generic parameterization.

● L1 optimal filter – generic shaping filter suitable for arbitrary number of resonance modes. Optimization-based
procedure searches for sparse-structure filters with a minimum number of nonzero elements which may be
beneficial for real-time implementation.

● H2 optimal filter – novel method based on quadratic optimization allowing to deliver generic shaping/smoothing
filters for arbitrary number of resonances. The chosen cost function leads to filters with a minimum energy of
the impulse response, which is beneficial for the generation of smooth trajectories easily followable by
feedback loops and tends to reduce energy consumption

● Weighted H2 optimal filter – novel method based on the modification approach by adding a user-specified
weighting allowing to gain further control over the dynamics of the shaping filter, this can serve for the design
of joint shaping & smoothing filters in an optimal manner, it is possible to e.g. enforce a defined high-frequency
roll-off in the smoother transition band

● Generic FIR low-pass/high-pass/band-pass/band-stop filter – implementation of state-of-the-art methods for
the synthesis of general-purpose filters which can be used separately or in conjunction with the above
mentioned Zero vibration shaping filters

● Sequential multi-level filters – combination of various filter types to a single FIR system

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 24 of 67

3.1.4.1.2 Optimal input shaping for gantry cranes systems

Specific shaping filter designs were formulated in terms of the development of anti-sway system for human-operated
gantry cranes in use-case UC1.1 (see Figure 16). The general idea is to use a shaping filter to modify the setpoint
commands generated by the human operator and use this modified signal as a velocity or position reference for the
existing motor feedback loops. Novel design method employs convex optimization to deliver shaping filters which
combine robustness and simplicity of implementation known from the ZV filtering theory and precise constraints
definition known from model-predictive control field. This allows utilizing the key advantages from both methods in
terms of performance and robustness.

Figure 16: Optimal control for gantry crane systems – principle of operation

More details about the algorithms and theory behind the design methods can be found in the I-MECH deliverable D4.3.
Novel theoretical results were presented in [5]-[9].

3.1.4.2 Implementation in Matlab-Simulink C

The shaping filter design methods were embedded in the developed graphical user interface. It is available in the form
of a Matlab application or as a stand-alone software which can run on any PC with Windows operating system (see
Figure 17). The designed shaping filters can be exported in the form of a .csv file containing resulting shaper impulse
function. The user can use it to transfer the shaping filter on an arbitrary real-time control platform. Alternatively, C-
code can be automatically generated from the Matlab/Simulink scheme containing the standard Discrete FIR filter
functional block. The individual filter design algorithms are also available in the form of C-MEX functions for Matlab
environment which can be accessed from the command line without the necessity of utilization of the graphical user
interface.

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 25 of 67

Figure 17: Shaping Filter Simulink Block.

3.1.4.3 Inputs, outputs, parameters, constants
General purpose/shaping/smoothing FIR filter

Inputs, Parameters and Constants

Parameter Description

In input signal to be processed by the filter

Num shaper impuse function, derived from the design methods using GUI/command line interface

RES External reset of the filter on the rising edge

EN Enable filter

Outputs

Parameter Description

Out Output filtered signal

Finite horizon optimal command shaping for gantry crane control

Syntax: coeffs=fhocs(om,ksi,G,amax,vmax,jmax,phimax,len,vcom,Q,R)

Inputs, Parameters and Constants

Parameter Description

G Structure describing the dynamics of the internal gantry velocity control loop

om Vector of eigen-frequencies of the load subsystem

ksi Vector of relative damping coefficients corresponding to the frequencies in om

amax (optional) Maximum allowed gantry acceleration

vmax (optional) Maximum allowed gantry velocity

jmax (optional) Maximum allowed gantry jerk

phimax (optional) Maximum allowed load-sway angle during transients

len Length of the filter in seconds, setting len=0 leads to a search for a time-optimal solution fulfilling all the

defined constraints

vcom Amplitude of the velocity command provided by the human operator

Q (optional) User specified quadratic weighting of the tracking error during transient maneuvre

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 26 of 67

R (optional) User specified quadratic weighting of the control effort

Outputs

Parameter Description

coeffs Impulse response coefficients of the synthesized shaping filter

3.1.4.4 Validation in MIL, PIL, HIL
Validation has been done in HIL on UC1.1. Validation on UC1.3 is ongoing. The proposed methods can be used in
various mechatronic applications, typical application domains include
- Robotic manipulators
- Machine tools
- Single-purpose machines
- High-precision servo systems
- Gantry crane systems.

3.1.5 Acceleration Feedback (FAG/TEK)

3.1.5.1 General description - algorithm theory

The acceleration feedback strategy is an additional feedback loop which modifies the current setpoint with the signal
provided by the accelerometer as shown in Figure 18. Since the accelerometer is placed in the TCP, the main aim
should not be to cancel the acceleration of this point but to cancel the difference of accelerations between the
acceleration desired according to the reference and the acceleration measured. The main advantage of this strategy is
that the acceleration measured by the accelerometer can be used without any transformation. Just a low pass filter may
be used depending on the level of noise introduced in the measure [10].

Figure 18: Acceleration Feedback control scheme.

3.1.5.2 Implementation in Matlab-Simulink C

The acceleration feedback technique has been implemented in Matlab/Simulink (see Figure 19).

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 27 of 67

Figure 19: Acceleration Feedback Simulink Block.

After the validation the block have been exported in FMU in order to be used in different simulation environments.

3.1.5.3 Inputs, outputs, parameters, constants
Inputs, outputs, parameters and constants of the acceleration feedback technique.
In this section a brief description on inputs, outputs, parameters and constants is shown. More details are available in
the function help.

MPC Blocks

Inputs, Parameters and Constants

Parameter Description

Acc_in Acceleration signal

Ka Acceleration feedback gain

Outputs

Parameter Description

Fout Force signal (to be fed in the torque FFW input of reference controller)

3.1.5.4 Validation in MIL, PIL, HIL

The validation of the acceleration feedback techniques has been done in MIL by using Matlab/Simulink and considering
Use Case 1.2 as a reference.

Figure 20 presents the general view of the developed model. It must be highlighted that two versions of the mechanical
section of the model has been tested, the first one using Simulink-Multibody (Simscape) and the second one using
Amesim.

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 28 of 67

Figure 20: Acceleration Feedback MIL validation example.

Figure 21 presents the content of the control block of the upper diagram. There, it can be observed how the outputs of
the acceleration feedback blocks are directly fed to the correspondent input of the reference controllers of the
respective joint of the robot.

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 29 of 67

Figure 21: Acceleration Feedback MIL detailed validation example.

Validation has been done in HIL on UC1.2.

3.1.6 H-infinity optimization approach (ZAPUNI)

3.1.6.1 General description - algorithm theory

This functionality provides a design method for an optimal coordinated synthesis of the acceleration feedback structure
shown in the previous section. The goal is to derive suitable parameters for both velocity/position feedback controller
which is assumed to be of a PID type and the auxiliary acceleration feedback taking the measurement from the load-
attached accelerometer providing additional plant output. This strategy allows to significantly improve the achievable
quality of control for mechanically compliant systems which are difficult to control using a conventional non-collocated
feedback solely from the motor side.

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 30 of 67

Figure 22: Weighted H-infinity optimization for the synthesis of both feedback control and auxiliary acceleration feedback

The optimization problem is formed as a weighted H-infinity minimization

with the user-specified weights W1, W2 and W3 allowing to formulate loop-shaping inequalities based on the frequency
domain requirements (see Figure 22).
Details about the design methods and used algorithms can be found in the I-MECH deliverable D4.3. Novel theoretical
findings and experimental results are presented in [11], [12].

3.1.6.2 Implementation in Matlab-Simulink C

The design method is accessible in the form of C-MEX function accessible from the Matlab environment. The result of
the controller synthesis are the parameters of the PID feedback controller and the acceleration feedback. They can be
used on a target platform to parameterize an existing control structure. Alternatively, C-code can be generated directly
from the Matlab-Simulink environment using the Simulink Coder.

3.1.6.3 Inputs, outputs, parameters, constants

Optimal design of Acceleration feedback-based controller

Syntax: [C,A,F]=pidacc(P,W1,W2,W3,afbmode,ka,abw)

Inputs, Parameters and Constants

Parameter Description

P Structure containing identified plant model, generally a single-input-two-outputs system describing
the dynamics from the motor torque/force to motor-side velocity/position and load-side acceleration

W1 User-specified weighting function for the definition of motor-side closed-loop performance in terms
of desired bandwidth, disturbance rejection in terms of low-frequency attenuation and robustness
in stability in terms of maximum sensitivity peak

W2 User-specified weighting function for the definition of the load-side closed-loop performance in
terms of the maximum load-side complementary sensitivity peak

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 31 of 67

W3 User-specified weighting function for the definition of closed-loop bandwidth. It can be used to
penalize high control activity to find a suitable performance trade-off

afbmode (optional) Mode of acceleration feedback tuning, 0 – automatic acceleration gain derivation, 1 –
manual user-specified gain for controller fine-tuning

ka (optional) Manual specification of the acceleration gain for afbmode=0

lpf (optional) Low-pass shaping filter selection flag, 0 – tune PI(D) gains only, 1 – include additional
low-pass filter to improve high-frequency roll-off

Outputs

Parameter Description

C PI(D) controller in the motor loop

A Acceleration feedback part of the controller

F Additional low pass shaping filter

3.1.6.4 Validation in MIL, PIL, HIL

Validation has been done in HIL on ZAPUNI Flexible manipulator setup. Detailed explanation of the proposed approach
can be found in I-MECH deliverable D4.3. New theoretical findings and experimental results are presented in [13].

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 32 of 67

3.2 Implementation aspects

3.2.1 Use Case 1.1

3.2.1.1 Anti-sway techniques for overhead cranes - Input shaping techniques (UNIBS/GEF)

The input shaping filters have been implemented in UC1.1 in ST language (IEC 61131.3 Structured Text). The Function
Block containing the input shaping filters can be easily added to already existing Gefran control structures. Due to the
small amount of memory, the Input shaping length has been kept fixed and equal to 200 samples so that the user just
need to select the desired shaper filter, and to insert the proper IS inputs (Undamped period of the system [s], Damping
coefficient and Input set point signal).

3.2.1.2 Anti-sway techniques for overhead cranes - Input/Output inversion techniques (UNIBS/GEF)

The input/output inversion technique has been implemented in UC1.1 in ST language (IEC 61131.3 Structured Text)
The input/output inversion technique does not present memory limitation on Gefran Drives. The user must insert just
the inputs and parameters described in the Input/Output inversion techniques section of this deliverable.

3.2.1.3 Anti-sway techniques for overhead cranes - MPC Based techniques (UNIBS/GEF)

The MPC Based techniques have been implemented in UC1.1 in ST language (IEC 61131.3 Structured Text).
The sampling time for the MPC strategy considered in the Gefran Drive is 24/32 [ms]. At the moment of this Deliverable
Contribution, the MPC technique has been tested on the HIL at the University of Brescia. Due to the fact that the Drives
used in the HIL are the same as the ones used in the UC1.1, the implementation aspects do not change.

3.2.2 Use Case 1.2

3.2.2.1 Acceleration Feedback (FAG/TEK)

The acceleration feedback functionality has been implemented in UC1.2 in C-code, thanks to a special option of
FAGOR CNCs that allows including additional features to the control loops. The algorithm runs at position loop
sampling rate, in this case 2 ms.
Accelerometer signal is directly read as an internal variable by the FAGOR CNC thanks to the inputs of the used drives.

3.2.3 Use Case 1.3

3.2.3.1 New design methods for Zero Vibration input shapers (ZAPUNI)

The input shaping filters designed using the developed SW tools were implemented in a functional blocks realizing a
generic discrete FIR filter in the REXYGEN framework which is compatible with the PLC controllers produced by TECO
company. They can be executed with an arbitrary update rate with typical values ranging from 100 microseconds to
several milliseconds based on a particular dynamics of the controlled plant. They can serve as a reference shaping
filter in the feedforward manner or inserted directly in the feedback loop to extend conventional velocity or position
controller.

3.2.3.2 H-infinity optimization approach (ZAPUNI)

The proposed control structure with the augmented controller containing the acceleration feedback part was
implemented in a functional blocks realizing the whole control structure in the REXYGEN framework which is

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 33 of 67

compatible with the PLC controllers produced by TECO company. As in the previous case, they can be executed with
an arbitrary sampling rate. The actual value of acceleration feedback is provided by a MEMS sensor connected to
analog input module of the controller. The signal is fed to the controller structure after A/D conversion and proper
preprocessing.

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 34 of 67

4 BB8 - Task 4.5 Robust motion control strategies

4.1 Functionalities

In this section a brief description of the general theory and most important tuning knobs behind functionalities in BB8
are provided, refer to D4.4 for more details. Finally, the validation of the functionalities on either the pilots or other
benchmark systems is provided.
In the remainder of this section the functionalities are outlined. Firstly, system identification is described that forms the
basis for all controller design procedures. Second, controller design methods that allow to design a controller on the
basis of a measured frequency response function are discussion. Third are the controller design that require a parametric
model to synthesize a controller. Note that all of these methods do not have a specific plant to be following and require
a lot of engineering insight to work properly. Hence, guidelines will be provided to simplify the tuning of the algorithm
and help the user to successfully apply them.

4.1.1 Data-driven system identification

One of the functionalities within BB8 is system identification on the basis of measurement data. Note that system
identification is also discussed within T4.3, the big difference is that T4.3 used FEM analyses to create a model instead
of data. Data-driven system identification allows to generate a frequency response function, or a parametric model,
one of which is required to tune a controller.

4.1.1.1 Open loop vs. closed loop measurement

In general one can make a distinction between two cases, one where the system is operating in open loop and the
second one where the system is operating in closed loop. The most simple case to recover the plant is the open loop
case. By exciting the system through the input and measuring the output one can determined the system dynamics as
follows

𝐺̂(𝑗 𝜔) = 𝑌(𝑘) 𝑈(𝑘)−1

which is the simplest case.

In the case where the system itself is unstable or has to follow a specific path, the system can alternatively be identified
in closed loop (see Figure 23). To recover the plan dynamics in this situation an additional step is required. First excite
the system via 𝑑 and measure 𝑢 and 𝑒, secondly determine the Process Sensitivity and Input Sensitivity

𝑃𝑆̂(𝑗 𝜔) = 𝐷(𝑘) 𝐸(𝑘)−1 , and

𝑆̂(𝑗 𝜔) = 𝐷(𝑘) 𝑈(𝑘)−1
and finally determined the plant dynamics as follows

𝐺̂(𝑗 𝜔) = 𝑃𝑆̂ ⋅ 𝑆̂−1 .

Figure 23: Generic closed-loop identification control scheme.

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 35 of 67

4.1.1.2 Excitation signal

The excitation signal is an important factor to determine the quality of the identified frequency response function. The
most easy option is to excite the system equally and an all frequencies by applying a white noise signal. An alternative
solution is to design a multi-sine, that allows to excite the system at specific frequencies and determine the amplitude
spectrum as desired. Note that if 𝑑(𝑡)is a white noise signal with a flat spectrum, then the actual excitation of the plant
𝑢 becomes 𝑢 = 𝑆 𝑑, hence the amplitude spectrum of 𝑢 is determined by the sensitivity function. If one desires to
excite the system equally for all frequencies in a closed loop setting, the excitation signal must have an amplitude
spectrum that approximates the inverse of the sensitivity function.

4.1.1.3 Averaging

Finally, an important factor in system identification is time, more specifically, a longer measurement gives more
information and allows to obtain a better result. Here, better result refers to having a lover variance of the identified
frequency response function. A measured data set will always contain measurement noise that can be minimized by
using averaging. Essentially this implies cutting the data set in multiple frames that are averages such that noise will
be mitigated. Depending on the type of excitation signal, periodic or non-periodic, one may require a windowing
function to avoid aliasing (see Figure 24).

Figure 24: Original measured signal (gray) and three separate frames where a window is applied (blue).

4.1.1.4 Implementation (Matlab function)

The above mentioned cases (open-loop and closed loop) can simply be implemented in Matlab code using the following
code:
Open loop case:
 [G,~] = tfestimate(U,Y,hanning(nfft),overlap,nfft,Fs);
Closed loop case:
 [S,~] = tfestimate(D,U,window,overlap,nfft,Fs);
 [PS,~] = tfestimate(D,E,window,overlap,nfft,Fs);

 G = PS./S; % computes the system FRF
With the following parameters.

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 36 of 67

Parameter Interpretation unit

nfft frame size [samples]

Fs sample frequency [Hz]

res resolution of the frf (= nfft/Fs)

overlap Overlap of individual frames, e.g.,
0.5*nfft for half a frame of overlap

[samples]

window windowing function, e.g.,
hanning(nfft)

(For more advanced methods, such as and background refer to Deliverable 4.4.)

To generate a multisine with random phase and specific amplitude spectrum, the following matlab code can be used;

% multisine generation by creating the spectrum and using the inverse Fourier transform
N = 1024;
nr_of_periods = 8;
f_min = 1;
f_max = N/3;
for k = 1:N
 if k >= f_min && k <= f_max
 a = rand(1)*2*pi;
 % Complex number with random phase and unit magnitude
 Y(k) = cos(a) + 1i*sin(a);
 else
 % unexcited frequencies
 Y(k) = 0;
 end
end
% Convert generated spectrum to the time-domain
u_period = 2*real(ifft(Y));
u_period = u_period/rms(u_period);

uu = repmat(u_period, nr_of_periods);
u = uu(1,:); % multisine input signal with 8 periods

Parameter Interpretation unit

N number of frequencies

nr_of_period number of periods in total

f_min frequency from which the spectrum
of the multisine is non-zero

[hz]

f_max frequency until which the spectrum
of the multisine is non-zero

[hz]

u multi-sine

4.1.1.5 Coupling analyses of the basis of measured FRF

Given a measured frequency response function or transfer function matrix of a system, the amount of coupling between
inputs and outputs can be investigated using the relative gain array. If the relative gain array approximates a diagonal

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 37 of 67

identity matrix, then the system is decoupled (until that frequency). Often mechatronic systems are (or can be) well
decoupled until the first resonance mode, this is referred to as rigid body decoupled.

4.1.1.6 Implementation (Matlab function)

The relative gain array can simple be computed as follows in Matlab.

RGA = G.*pinv(G).’;

where G is a complex valued matrix containing the frequency response function of the system.

4.1.2 Multivariable controller design

This document contains several methods that allow to design a controller for a multivariable system on the basis of
either a measured frequency response function or a parametric model. A stepwise approach to multivariable controller
design that is applicable to motion system is given in Figure 25.

Note: these methods still require engineering insight to successfully interpret the results and tune the controller. The aim
of this section is to provide the general reasoning behind the methods and to get started with a simple script that can be
extended to the specific needs of the application.

Figure 25: MIMO controller design steps.

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 38 of 67

4.1.2.1 Decoupling

The first step to design a controller for a multivariable system is to check whether the system is decoupled. This can be
done using the RGA as discussed before. If the system is not decoupled, one can proceed with rigid-body decoupling
based on the geometric information of the system. Unfortunately, there is not generic approach for decoupling that works
for all systems based on a measured FRF. Essentially, decoupling implies that one must find a static matrix 𝑇𝑢 and
𝑇𝑦such that a new system

𝐺𝑑𝑒𝑐 = 𝑇𝑦𝐺𝑇𝑢

is decoupled. How to design the decoupling matriced is application specific.

Once a system is (rigid-body) decoupled, a simple multi-SISO controller can be designed, i.e., design a controller for
each loop individually (see Figure 26). For motion systems the following rules of thumb can be used as a starting point
for the SISO controller.

𝐶𝑖(𝑠) = 𝐾𝑝 ⋅ 𝐶𝑙𝑒𝑎𝑑(𝑠) ⋅ 𝐶𝑙𝑝(𝑠) = 𝐾𝑝 ⋅
𝑠 + 𝐵𝑊/3

𝑠 + 3 ∗ 𝐵𝑊
⋅

1

𝑠 + 𝐵𝑊 ∗ 10

where BW is the desired bandwidth.

Figure 26: Decoupled MIMO control scheme.

4.1.2.2 Sequential loop closing

In the case that a system is not decoupled, or it is not desired/possible to decouple the system or performance is not as
desired, then sequential loop closing can be applied directly. Consider the following example (see Figure 27) on a 2x2
system to present the sequential loop closing principle.

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 39 of 67

Figure 27: Non-decoupled MIMO control scheme.

step 1: Find a stabilizing controller 𝐶2(𝑠) for the plant 𝐺22(𝑠)

step 2: compute the equivalent plant containing also the interaction 𝐺22
𝑒𝑞 = 𝐺22 −

𝐺12𝐶1𝐺21

1+𝐺11𝐶1

step 3: find a stabilizing controller 𝐶1(𝑠) for the plant 𝐺22
𝑒𝑞

If the performance is not satisfactory then one can close the loops in a different sequence. Furthermore, it is essential
that the loops are closed in the same sequence as used to design the controller. Also note that stability of previously
closed loops is guaranteed, however, robustness margins of previously closed loop may change if new loops are closed.
Hence one should always check the robustness margins for all loops after designing the full MIMO controller.

4.1.2.3 Factorized Nyquist

Factorized Nyquist is a tool to analyze stability of a MIMO system where interaction is present. Assume that the system
𝐺with a given controller 𝐾 is stable if the following closed loop transfer function 𝑆 = (𝐼 + 𝐺𝐾)−1is stable. This can
alternatively be written as

(𝐼 + 𝐺𝐾)−1 = (𝐼 + 𝐺̃𝐾)−1(𝐼 + 𝐸 𝑇̃)−1

where 𝐺̃can be seen as the diagonal elements of the system 𝐺 and 𝐸represents the interaction. Then the following test

can be used to check stability of the interaction (assuming that 𝐾 is a stable controller for 𝐺̃).

1) 𝜌(𝐸 𝑇̃) < 1 ∀ 𝜔 or 2) 𝜎̄(𝑇̃) < 𝜇𝑇̃(𝐸) ∀ 𝜔

where 𝜌(𝐸𝑇̃) and 𝜎̄(𝑇̃) can be computed using the following scripts.

function rho = Compute_spectral_radius(ET,f)

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 40 of 67

% Computes the spectral radius of ET which is a transfer function and f is
% the frequency vector.

ET_freq = freqresp(ET,f);

for k = 1:1:length(f)
 rho(k) = max(abs(eig(ET_freq(:,:,k))));
end

end

function sigma_bar = Compute_max_singular_value(ET,f)
% Computes the maximum singular value of ET which is a transfer function and f is
% the frequency vector.

ET_freq = freqresp(ET,f);

for k = 1:1:length(f)
 [~,S,~] = svd(ET_freq(:,:,k));
 sigma_bar(k) = max(S);
end

end

finally, to compute the structured singular value𝜇𝑇̃the Matlab function mussv can be used.

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 41 of 67

4.1.2.4 Robust model-based controller synthesis

To perform model-based controller synthesis, a parametric model of the system is required. For motion systems in
general, a 4-block problem approach is applicable to shape four closed-loop transfer function. This can be done
according to the following steps:

- First define the performance variables and generalized disturbances (see Figure 28)

Figure 28: Performance Variables and Generalized Disturbances scheme.

𝑧 = [𝑧1 𝑧2]
⊤ and 𝑤 = [𝑤1 𝑤2]

⊤. The transfer function matrix between the generalized performance variables

and generalized disturbances is given by 𝑀(𝑠).

Note that 𝑀is given by the lower linear fractional transformation (LFT) which can be computed easily in Matlab
using the LFT(sys1,sys2,nu,ny)command.

- Next, the performance weights must be included in the form of weighting filters. On the input side the filters
𝑉1 and 𝑉2 are included and at the performance channels 𝑤1 and 𝑤2, which leads to the following weighted 4-

block problem 𝑀 ̃.

In matlab:
V = blkdiag(V1,V2); W = blkdiag(W1,W2); Mtilde = W*M*V;
the design of shaping filters depends on the performance variables for that specific application. In general they
can be seen as (inverse) of upper-bound for the four closed-loop transfer function. As an example, if one desires
to have high-frequency roll-off in the control sensitivity, the filter 𝑊2 should be chosen such that it is large in the
high-frequency range. This leads to a large weight on the higher frequencies, such that the control sensitivity
will become small.

- The last step is to minimize the 𝐻∞-norm of the closed-loop system 𝑀̃ over all possible stabilizing controllers,

where the 𝐻∞-norm of 𝑀̃ is given by the maximum singular value over all frequencies of 𝑀 ̃

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 42 of 67

in Matlab this can be implemented using the following command:
[K_infty,CL,gamma] = hinfsyn(Mtilde,nu,ny)

Parameter Interpretation

K_infty Obtained stabilizing H-infinity controller (K inself can be unstable)

CL Closed loop system 𝑀̃with designed controller K_infty

gamma Obtained value for ||𝑀||∞

Mtilde weighted closed loop system to be minimized. With inputs [𝑤 𝑦𝑘] and outputs [𝑧 𝑢𝑘].

nu Number of controller inputs, i.e., dimension of 𝑢𝑘

ny Number of controller outputs, i.e., dimension of 𝑦𝑘

where K_infty is the obtained H-infinity controller, CL is the system Mtilde after optimization and gamma is the

obtained value for the H-infinity norm of 𝑀̃. If gamma < 1, then all the performance specs are obtained, if this
is not the case then not all performance specifications, i.e., weighting filter, are satisfied.

4.1.3 Beyond state-of-the-art

In this section, two methods are described that are subject of current research. The first method is about online tuning
of feedforward parameters on the basis of data. The second methods aim at tuning the PID parameters of the feedback
controller automatically, i.e., similar to H-infinity control but with

4.1.3.1 Data-driven online feedforward parameter tuning

The principle behind this method is depicted below (see Figure 29). The idea is to generate a feedforward controller
which is the inverse of the actual plant such that the tracking error 𝑒(𝑡)is minimized.

Figure 29: Data driven online feedforward parameter tuning control scheme.

The following steps can be followed in order to apply this method.

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 43 of 67

- Create a low order parametric model that approximates the true plant, consider for example:

𝑃(𝑠) =
𝑑𝑠 + 𝑘

𝑚𝑠2 + 𝑑𝑠 + 𝑘

and discretize this model to obtain the discrete time description.
- The second step is to select basis functions that can represent the plant dynamics as follows,

𝑃̂(𝑧) =
𝜓1(𝑞) 𝜃1+ . . . + 𝜓𝑛(𝑞)𝜃𝑛

𝜓𝑛+1(𝑞) 𝜃𝑛+1 +. . . + 𝜓𝑚(𝑞) 𝜃𝑚

such that in the subsequent steps the parameters corresponding to the basis functions can be optimized. The
following basis functions are widely used,

𝜓(𝑧) = (
𝑧 − 1

𝑇𝑠 𝑧
)𝑛

which can be seen as the discrete time equivalent of the differential operator.
- For further details on the optimization refer to [1] or [2].

The following tuning knobs are available:

Parameter Description

𝑃(𝑡0) Initial ‘covariance’ matrix. Influences the convergence rate of the recursive least squares algorithm

𝜃(𝑡0) Initial condition for the RLS algorithm to start with, choose this based on prior knowledge or
initialize this as zero.

𝑓𝑐 Cut-off frequency for the low-pass filter 𝐹 in [1]. Start with a low value for 𝑓𝑐and increase if possible.

Note that a low value for 𝑓𝑐 limits learning beyond that frequency, hence for performance it should
be high and for robustness low.

4.1.3.2 Implementation

An implementation example for data-driven feedforward tuning can be found in [1] and fundamental limitations in
presence of measurement noise can be found in [2].

4.1.3.3 PI(D) controller tuning using H_infinity regions approach

A new design method specifically tailored to PID controllers was developed in terms of I-MECH BB8 functionalities. It is
primarily intended for PI(D) controllers and simple fixed structure feedback control algorithms with two or three
parameters (lead-lag compensators, low-order static feedback etc.).
The basic features are summarized as follows:

● Formulation of the design specifications in the frequency domain by imposing arbitrary closed-loop weighted
sensitivity inequalities

● Possibility of automatic calculations for the auto-tuning purposes
● Generic method for an arbitrary LTI system described by a rational transfer function + time delay
● Analytical method for the computation of the admissible set of controllers, no performance losses due to

approximations, model reduction or non-convex numerical optimization

The performance specification can be expressed by means of a loopshaping inequalities

where H corresponds to an arbitrary closed-loop transfer function given in the form of:

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 44 of 67

The transfer function S(s) denotes one the closed-loop sensitivity functions (sensitivity, complementary-, input- and
controller-sensitivity (see Figure 30)) and W(s) introduces a user-defined frequency-dependent scaling

Figure 30: Transfer function representation on a standard closed loop control scheme.

 The goal is to find a controller C(s,k) which together with the given H(s) fulfill the following three conditions
1. C(s,k) internally stabilizes the closed-loop

2. H(s,k) used in the design criterion is stable

3. The H-infinity norm condition holds

More thorough explanation of the algorithm is given in the I-MECH D4.4 deliverable.
Novel theoretical findings and applications of this method in motion control design problems were reported in [14]-[16].

4.1.3.4 Implementation

The proposed design method was implemented in Matlab environment. It can work also as a standalone application
running independently from Matlab SW by generating an executable using the Matlab Compiler code generation
function.
The algorithm is summarized in the following steps:
1. Derive the plant model P(s) from a mathematical modelling or experimental identification

2. Formulate arbitrary number of design constraints in the frequency domain by shaping the closed-loop sensitivity

functions or their mixed-sensitivity combination

3. Compute the H-infinity region for the individual loopshaping inequalities from the 2nd step.

4. Derive the intersection of the individual H-infinity regions. The resulting set in the parametric plane defines the set of

admissible controllers.

5. Select one particular controller from the admissible set. A suitable candidate is the one with the maximum integral

gain in the case of PI(D) compensator. A method of gridding may be used to fulfill some additional design requirements

which could not be addressed directly in step 2.

H-infinity design of PI(D) controllers

Inputs, Parameters and Constants

Parameter Description

P LTI Plant model in the form of transfer function

Wi Constant or frequency dependent weighting function for the i-th design requirement

SFi Closed-loop sensitivity funtion for the i-th design requirement

gami Scalar parameter for the i-th design requirement formulated as a loop-shaping inequality
||Wi*Sfi||<gami

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 45 of 67

Outputs

Hinfreg.fig Matlab figure with plotted H-infinity regions defining the admissible set of controllers

Kopt Optimal PI(D) controller minimizing the IE criterion

Regs Vector containing the samples of the derived H-infinity region in the parametric plane of the controller
which designates the whole set of admissible controllers (if non-empty). This can be used for a
subsequent fine-tuning by selecting a particular controller for the admissible set using a secondary
design objective.

The implemented function can be called form the command line. Alternatively, a simple graphical user interface designed
in Matlab (see Figure 31) can be used to formulate the design requirements and evaluate the design results interactively

Figure 31: Simple GUI for the implemented H-infinity design method.

4.2 Implementation aspects

4.2.1 Pilot 1

System identification and coupling analyses is successfully applied to Pilot 1, the main outcome is that interaction in
the system is limited and therefore no MIMO control techniques are required and multi-SISIO with rigid body decoupling
is sufficient. To apply sequential loop closing for validation, the decoupling matrices have been perturbed (to simulate
interaction) and a controller is designed using SLC.

The above described BB8 functionalities have been implemented in Matlab/Simulink in Pilot 1.

4.2.2 Pilot 2

Similar to Pilot 1, system identification and decoupling analyses have been performed. Note that Pilot 2 is a brownfield
application [17], [18].

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 46 of 67

5 BB9 - Task 4.6 Iterative and repetitive control methods

5.1 Functionalities

5.1.1 Repetitive Control for repetitive disturbance compensation (UNIBS/GEF)

5.1.1.1 General description - algorithm theory

In this section a repetitive control (RC) strategy for the compensation of periodic and/or repetitive disturbance is
presented.
The generic structure of a Repetitive Controller for the compensation of periodic and/or repetitive disturbance is shown
in Figure 32.
The Repetitive Controller, in order to be applied to the control structure, needs the knowledge of the closed loop
transfer function of the controlled system. It is in fact possible to say that the Repetitive Controller is based on the
model of the system to control and on the closed loop controller applied.

Figure 32: Repetitive control scheme.

5.1.1.2 Implementation in Matlab-Simulink C

The RC technique has been implemented in Matlab/Simulink (see Figure 33).

Figure 33: Repetitive control Simulink Block.

After the validation the block has been exported in FMU to be used in different simulation environments.

5.1.1.3 Inputs, outputs, parameters, constants

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 47 of 67

Inputs, outputs, parameters and constants of the RC technique.
In this section a brief description on inputs, outputs, parameters and constants is shown. Please, refer to the function
help for more detailed information.

RC Block

Inputs, Parameters and Constants

Parameter Description

ctrl_error Control error

RC_start Enable of the RC block

Kr RC gain

Ts Sampling time [s]

d Delay correction constant

Td Disturbance period [s]

FIR_cutoff_f Stability filter cutoff frequency [Hz]

numGz Numerator of the closed loop transfer function

denGz Denominator of the closed loop transfer function

Outputs

Parameter Description

Y RC output to sum to the control error

5.1.1.4 Validation in MIL, PIL, HIL

The validation of the RC technique has been done in MIL by using Matlab/Simulink.
Then, always in MIL, the technique has been validated by using Simulink-Multibody and in co-simulation Simulink-
Amesim.
In Figure 34 the example of the Simulink scheme for the MIL validation of the Repetitive Control technique is shown.

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 48 of 67

Figure 34: RC MIL validation example.

The Repetitive Control technique has then been validated in PIL and HIL on the Use Case 1.1.

5.1.2 Iterative learning Control for repetitive disturbance compensation (UNIBS/GEF)

5.1.2.1 General description - algorithm theory

In this section an Iterative Learning Control (ILC) strategy for the compensation of periodic and/or repetitive disturbance
is presented. The generic structure of an Iterative Learning Controller for the compensation of periodic and/or repetitive
disturbance is shown in Figure 35.
The Iterative Learning Controller, differently from the Repetitive Controller, in order to be applied to the control
structure, doesn’t need the knowledge of the closed loop transfer function of the controlled system. It is in fact possible
to say that the Iterative Learning Controller is NOT based on the model of the system to control and on the closed loop
controller applied.

Figure 35: Iterative learning control scheme.

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 49 of 67

5.1.2.2 Implementation in Matlab-Simulink C

The ILC technique has been implemented in Matlab/Simulink (see Figure 36).

Figure 36: Iterative learning control Simulink Block.

After the validation the block has been exported in FMU to be used in different simulation environments.

5.1.2.3 Inputs, outputs, parameters, constants

5.1.2.3.1 Inputs, outputs, parameters and constants of the ILC technique.

In this section a brief description on inputs, outputs, parameters and constants is shown. Please, refer to the function
help for more detailed information.

ILC Block

Inputs, Parameters and Constants

Parameter Description

ctrl_error Control error

ctrl_action Control action

ILC_start Enable of the ILC block

L_gain ILC gain

Ts Sampling time [s]

d Delay correction constant

Td Disturbance period [s]

FIR_cutoff_f Stability filter cutoff frequency [Hz]

Outputs

Parameter Description

Y ILC output to sum to the control action

5.1.2.3.2 Validation in MIL, PIL, HIL
The validation of the ILC technique has been done in MIL by using Matlab/Simulink, then, always in MIL, the technique
has been validated by using Simulink-Multibody and in co-simulation Simulink-Amesim.
In Figure 37 the example of the Simulink scheme for the MIL validation of the Iterative Learning Control technique is
shown.

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 50 of 67

Figure 37: ILC MIL validation example.

The Iterative Learning Control technique has then been validated in PIL and HIL on the Use Case 1.1.

5.1.3 Anticipatory ILC (TEK)

5.1.3.1 General description - algorithm theory

Anticipative ILC can help to push the capacity of the machine beyond these limitations in both complex trajectory
machining and in rigid tapping. It consists in adapting the results of the proportional ILC by accounting for the settling
time of the controlled system in closed loop [19].

5.1.3.2 Implementation in Matlab-Simulink C
The anticipatory ILC techniques has been implemented in Matlab/Simulink (see Figure 38).

Figure 38: Anticipatory ILC Simulink Block.

After the validation the block have been exported in FMU in order to be used in different simulation environments.

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 51 of 67

5.1.3.3 Inputs, outputs, parameters, constants
Inputs, outputs, parameters and constants of the anticipatory ILC technique.
In this section a brief description on inputs, outputs, parameters and constants is shown. More details are available in
the function help.

MPC Blocks

Inputs, Parameters and Constants

Parameter Description

measuredError Buffer containing the positioning error in the previous iteration

active Operating mode (0: calculation for the next iteration is performed; 1: input/output buffers
load/download)

Outputs

Parameter Description

newPosCommand ILC output buffer to be fed in position FFW input of reference controller

5.1.3.4 Validation in MIL, PIL, HIL
The validation of the anticipatory ILC technique has been done in MIL by using Matlab/Simulink and considering Use
Case 1.2 as a reference.

Figure 39 presents the general view of the developed model. It must be highlighted that two versions of the mechanical
section of the model has been tested, the first one using Simulink-Multibody (Simscape) and the second one using
Amesim.

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 52 of 67

Figure 39: Anticipatory ILC MIL validation example.

Figure 40 presents the content of the control block of the upper diagram. There, it can be observed how the outputs of
the anticipatory ILC blocks are directly fed to the corresponding input of the reference controllers of the respective joint
of the robot.

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 53 of 67

Figure 40: Anticipatory ILC MIL expanded validation example.

Validation has been done in HIL on UC1.2.

5.1.4 PI(D) Repetitive controller (ZAPUNI)

This functionality provides a design method for the synthesis of plug-in type PID + repetitive controller for the reference
architecture shown in Figure 41. The goal is to parameterize the feedback controller, which assumed to be of a PI(D)
type, and the repetitive control block R which can be appended when the compensation of a periodic disturbance or
tracking of a periodic reference is required with a high fidelity. Conventional methods, known from the literature,
assume the feedback controller C to be known in advance, usually assumed to be tuned for the nominal plant P without
the repetitive control part R. The advantage of the novel design method is an algorithm which allows a concurrent
design of both the feedback controller and the repetitive control module while guaranteeing stability and performance
specifications for both nominal (w/o RC) and RC modes of operation.
The theoretical development of the design method is explained in [20], [21].

https://docs.google.com/document/d/1bJ7D54FxwxkxWlb0KjubH31OBENwfSDt/edit#heading=h.3mzq4wv

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 54 of 67

Figure 41: Assumed repetitive control setup, P – controlled plant, C – feedback compensator, R – plug-in repetitive control block, Q

– robustness filter, T – period of repetitive disturbance in r/d

5.1.4.1 Implementation aspects

The design method is accessible in the form of C-MEX function accessible from the Matlab environment. The result of
the controller synthesis are the parameters of the PID feedback controller and the repetitive control block. They can
be used on a target platform to parameterize an existing control structure. Alternatively, C-code can be generated
directly from the Matlab-Simulink environment using the Simulink Coder.

PID + RC design

Syntax: [C,Q]=pidrc(P,WS,WT,WSrc,Tper,wq)

Inputs, Parameters and Constants

Parameter Description

P Plant transfer function model

WS Weighted sensitivity loop-shaping filter for the nominal stability and performance specification

WT Weighted complementary sensitivity loop-shaping filter for the nominal stability and performance
specification

WSrc Robustness and performance specification for the RC regime of operation

Tper Period of the reference/disturbance for the RC part

wq Assumed disturbance bandwidth [Hz]

Outputs

Parameter Description

C PID controller

Q Robustness filter

The proposed design method was validated experimentally using ZAPUNI Flexible arm motion stage. The results are
summarized in the above mentioned references. More detailed explanation is available in the D4.5 deliverable.

5.1.5 Model-Based ILC strategies (TUE)

Iterative learning control can be used for systems performing repeating motion tasks (see Figure 42 and Figure 43) to
remove the repeating parts of the error. The main assumption is that the initial condition at the start of each motion task
is equivalent to the previous tasks. The main idea is to compute a feedforward signal 𝑢𝑓𝑓 for the next task, indicated with

𝑗 + 1, on the basis of the error data from the current task, a learning filter and a robustness filter.

https://docs.google.com/document/d/1bJ7D54FxwxkxWlb0KjubH31OBENwfSDt/edit#heading=h.2r0uhxc

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 55 of 67

Figure 42: Generic closed-loop control scheme.

Figure 43: Generic repetitive task set point signal.

The ILC update is given by
𝑓𝑗+1 = 𝑄(𝑓𝑗 + 𝛼 𝐿𝑒𝑗)

with the following parameters.

Parameter Description

𝑓𝑗, 𝑓𝑗+1 Feedforward signal for the 𝑗𝑡ℎ task, vector with length equal to the task length

𝑒𝑗 Error corresponding to the 𝑗𝑡ℎ taks, vector with length equal to the task length

𝐿 Learning filter, ideally 𝐿 = (𝑃𝑆̂)−1, where 𝑃𝑆̂is a parametric model of the process sensitivity.

𝑄 Robustness filter. Design 𝑄 such that the stability condition |𝑄(1 + 𝐺𝑆𝐿)| < 1holds for all

frequencies. For performance 𝑄 is preferably close 1 and learning is limited for frequencies where
𝑄 < 1.

𝛼 Learning gain. If trial varying disturbances are present it is not prefered to learn there each task.
Hence a learning gain 𝛼 < 1 can be used to reduce the learning per trial and hence be robust against
trial varying disturbances.

If the process sensitivity contains non-minimum phase zeros, then the following matlab function can be used to
compute a stable but potentially non-causal inverse.

[Lnum, Lden, phd] = zpetc(PS.a,PS.b,PS.c,PS.d,rho);
Lc = tf(Lnum, Lden,Ts); % causal part of the inverse
z = tf('z', Ts);
L = Lc*z^phd; % non-causal inverse

Parameter Description

PS.a, PS.b, PS.c, PS.d state-space matrices of the process sensitivity

rho Stability radius of in the complex plane for discrete-time systems. (default = 1, is the unit
circle)

Lnum, Lden Numerator and denominator coefficients of the causal part of L

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 56 of 67

phd the number of non-causal samples in the learning filter, i.e., 𝐿𝑐 = 𝑧𝑝ℎ𝑑 ⋅ 𝐿𝑛𝑐

Ts Sample time

The following matlab example can be used to compute the feedforward update:

function [f_next] = ILC_update(error,f_prev,L,Q,alpha,phd)

% Filter error with learning filter L
L_out = alpha.*filter(L.num{1},L.den{1},error);

% Phase compensation, shirt feedforward back of phd samples
L_out_shift = [L_out(phd+1:end); zeros(phd,1)];

% Feedforward signal without Q filter
f_next_noQ = f_prev + L_out_shift;

% Anti-causal filtering of f_next to implement Q filter
f_next = filtfilt(Q.num{1},Q.den{1},f_next_noQ);

end

Parameter Description

Q Q-filter transfer function

L L-filter transfer function

error Error obtained from the previous trial

f_prev Previous feedforward signal

Alpha learning gain

phd number of non-causal samples is Q (see also the zpetc function)

f_next feedforward signal for the next trial

Note that alternative implementations are available if the reference does change from one task to the next. For more
details check for example [22]-[25].

5.2 Implementation aspects

5.2.1 Pilot 1

Repetitive control is applied to Pilot 1. The specific form of RC that has been implemented is with a buffer in the position
domain. This allows to reject disturbances with varying frequency, whereas standard RC can only deal with
disturbances that have a fixed period. For confidentiality reasons the details cannot be included in this document,
however, to learn more on this topic refer to [22].

5.2.2 Pilot 2

Standard ILC has been implemented on Pilot 2. Note that Pilot 2 is a brownfield application, hence the code that is
used to implement ILC is in principle the same as shown in section 7.1.5 but it is not given here.

5.2.3 Use Case 1.1

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 57 of 67

5.2.3.1 Repetitive Control for repetitive disturbance compensation (UNIBS/GEF)

The Repetitive control for repetitive disturbance compensation has been implemented in the HIL setup in Brescia. The
HIL setup uses the same Gefran ADV 200 drives that are mounted on the UC 1.1. The Control algorithm has been
written in IEC61131.3 standard structured text language. The algorithm runs at 1 ms sampling rate.

5.2.3.2 Iterative Learning Control for repetitive disturbance compensation (UNIBS/GEF)

The Iterative Learning Control for repetitive disturbance compensation has been implemented in the HIL setup in
Brescia. The HIL setup uses the same Gefran ADV 200 drives that are mounted on the UC 1.1. The Control algorithm
has been written in IEC61131.3 standard structured text language. The algorithm runs at 1 ms sampling rate.

5.2.4 Use Case 1.2

5.2.4.1 Anticipatory ILC (FAG/TEK)

The anticipatory ILC functionality has been implemented in UC1.2 in C-code, thanks to a special option of FAGOR
CNCs that allows including additional features to the control loops. The algorithm runs at position loop sampling rate,
in this case 2 ms.
For the memory management, which is critical for ILC, FAGOR’s Data Logger tool has been used. This tool is able to
read any of the CNC variables at position loop sample time and store it in a csv file.
The ILC algorithm reads the csv file generated in the previous iteration and gets the needed information to calculate
the inputs for the next iteration [26].

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 58 of 67

6 BB11 - Task 4.7 Advanced motion control algorithms and
software for predictable multi-many core platforms

6.1 FPGA platform

6.1.1 Functionalities

BB10/BB11 are specifically concerned with creating PIL and HIL configurations to test and debug using Simulink
environment. The testing, debugging and performance analysis of control building blocks (BB6-BB9) may be possible
using the above environments. In these environments, the following design questions are answered.

- Controller code execution is firm real-time on the target platform and get the timing numbers such as execution

times.

- Feasible sampling period.

- Memory requirement to execute the control codes.

- Functional verification of the overall implementation.

- Verification of performance (e.g., response time).

- Logging and scoping of signal and errors.

- Data-type support and conversions validation.

As explained in D2.4, Maltab® Simulink® will be used as a model-based design environment for controller design,
testing and testing. The design process will start with full MIL testing in the Simulink environment. Under I-MECH, we
use Simulink Embedded Coder to generate code for the considered target platforms ─ i.e. COTS platform (with a
dedicated RTOS) or FPGA platform, depending on the platform choice in BB10. The code is further compiled using
target specific compilers (i.e. GCC for both platforms) to generate the binary and download to the target platform. This
is depicted in Figure 44.

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 59 of 67

Figure 44: Model-based design methodology adopted for BB11.

In PIL configuration setup Maltab® Simulink® drives the overall system. This allows after each simulation step to inspect
the internal state. Therefore, signals inside the controller and plant can be traced and viewed from inside Matlab®
Simulink® and compared to Maltab® Simulink® simulation.
The PIL framework is developed as a system target file for a custom target. When a model is provided in Simulink and
the MIL simulations are successful, the next step is to perform the PIL simulations to achieve:

● Memory requirement to execute the control codes.
● Functional verification of the overall implementation.
● Verification of performance (e.g., response time).
● Data-type support and conversions validation.

In the following, the steps of performing PIL simulation using the provided framework is demonstrated.

6.1.1.1 PIL Simulations in Simulink

To perform a PIL simulation, the user first chooses the developed system target file (STF) as the code generation tool
to generate the target specific code (in this case the FPGA platform). In a Simulink model (which is already used for MIL
simulations), the user can choose the custom system target file(which is called CompSOC_ec.tlc) in: Configuration
Parameters> Code Generation>System Target File> CompSOC_ec.tlc.
When the STF is chosen, a menu called CompSOC_Options is added to the code generation bar where the user can
modify the scheduling of the targeted FPGA platform. This menu can be seen in the top right of the previous Figure.

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 60 of 67

6.1.1.1.1 Code generation report and code profiling

As discussed the PIL simulation provides the information about the memory requirements and the response time of the
simulation on the platform.
The code generation report is a report created from the code generation, where the user can trace the size of each of
the generated code for each part of the model. The user can enable the code generation report through: Configuration
Parameters> Code Generation> Report> Enable code generation report.
The developed STF is able to report the execution time of the model on the target platform. This is provided to the user
as a pop-up report at the end of the simulation. The user can enable the execution time measurement through:
Configuration Parameters> Code Generation> Verification> Measure execution times.

6.1.1.1.2 Performing PIL simulation

Now that all the parameters are set, the user can perform a PIL simulation on the target platform. To do this, changes
the simulation mode to processor in the loop (PIL), and hit the run button. In the background (where the steps can be
traced through diagnostic viewer) the STF first generates the code for the model with the usage of Mathworks embedded
coder. When the code is generated, the STF continues the process by compiling the generated code and building the
executable. At the end of build, the STF reports the size of the executable and in the case the size of the executable is
bigger than the target memory, is halts the simulation and gives an error, reporting the issue.
If the executable fits in the target memory, the STF uploads the executable on the target platform and starts the
simulation. Within the simulation the user can track the output signals (via simulation sink blocks such as Scope).
When the simulation is finished, the code profiling report pops up, and the user can view the measured execution time
for the different parts of the model.

6.1.1.1.3 PIL simulation for a part of the model

The STF is able to perform the PIL simulation for a part of the model (instead the whole model). This means that a part
of the simulation stays in Simulink environment and is simulated by the Simulink engine, while another part is simulated
on the target platform. As discussed in section 6.1.1.1, Simulink is the overall system in PIL simulations and perform an
I/O exchange with the platform for any simulation step.
To perform the PIL simulation for a part of the model, this part is first encapsulated in a subsystem. The user then
generates the code for the aforementioned subsystem. To do this, the user first inform the STF that the code generation
for the block should target PIL simulation, through: Configuration Parameters> Code Generation> Advanced
Parameters> Create Block> PIL. Next, the user builds the subsystem (by right click on the subsystem> C/C++ code>
Build this subsystem). The STF starts generating the code for the subsystem and results a new PIL block. The initial
subsystem is then replaced by the resulted PIL block. The next steps of performing the PIL simulation is the same as
the Section 6.1.1.2 with the only difference that in this case, the simulation mode changes to normal.

6.1.1.2 HIL Simulations in Simulink

Once both PIL configurations are used to validate the setup, it can be validated against the actual hardware, or an
accurate model, using the Hardware in the Loop (HIL) setup. This step is used to check the drivers, the timing of the
drivers and timing of communicating with the actuators and the sensors. It is also used to validate the correct working
of the controller against the actual hardware. This setup will run at the actual sample frequency.
In this configuration, Matlab® Simulink® does not drive the configuration, the setup runs standalone and self-timed.
Controlling and logging is done via the High-level user interface (gRPC).
The configuration is meant to address the following questions:

● Controller code execution is firm real-time on the target platform.
● Functional verification

● Logging of signal and errors

● Tuning the simulation parameters via High-level user interface

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 61 of 67

6.1.1.2.1 External mode

To demonstrate the HIL abilities of the STF, we perform external mode simulation in Simulink. The external mode
simulation is similar to PIL simulation. The difference is that in external mode Simulink® does not drive the simulation
and the executable generated out of the model runs as a standalone on the target platform.
To perform the external mode simulation, the user first chooses the provided STF using the similar instruction described
in Section 6.1.1. Next, the user should specify that code generation should target external mode. To do this the external
mode should be enabled through: Configuration Parameters> Code generation> Interface> External mode.
The external mode enables the user to tune the model parameters while the simulation is running on the target platform.
To enable this, the parameters behavior should change from inlined (default) to tunable. This can be done through:
Configuration Parameters> Code generation> Optimization> Default parameter behavior> Tunable.

6.1.1.2.2 Performing external mode simulation

Now that all the parameters are set, the user can perform an external mode simulation on the target platform. To do this,
the user changes the simulation mode to external mode, and hit the build button. In the background (where the steps
can be traced through diagnostic viewer) the STF first generates the code for the model with the usage of Mathworks
embedded coder. When the code is generated, the STF continues the process by compiling the generated code and
building the executable. At the end of build, the STF reports the size of the executable and in the case the size of the
executable is bigger than the target memory, is halts the simulation and gives an error, reporting the issue.
If the executable fits in the target memory, the STF uploads the executable on the target platform and starts the
simulation.
In order to connect to the board to trace the data and tune the parameter, the user hit the connect button (which replaced
the simulation run button). Doing this, commands the STF to start the communication with the hardware through an
initial handshaking. When the handshaking is successful, the executable running on the board and Simulink are
connected. Within the simulation, the user can track the output signals (via simulation sink blocks such as Scope) as
well as tuning the parameters (via blocks parameters).
To stop the simulation on the target, the user hits the stop button.

6.2 Implementation aspects

6.2.1 Pilot 1
The implementation targeted with BB11 is Pilot 1. The implementation is defined in an integration process where the
BB functionalities are presented to the pilot owner and validated on the pilot.
At the time of writing this report, the integration of the BB with Pilot 1 is ongoing. Through the integration meeting, the
BB functionalities initially were presented to the pilot owner. The implementation of the BB on Pilot 1 was then decided
to perform the steps proposed in Figure 45.

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 62 of 67

Figure 45: The integration steps of BB11 with Pilot 1.

The integration in the Code generation, Build executable, upload policy, and executing on the platform are done. The
remaining step is “host application” where the user can use the data tracing and parameter tuning via a host application
else than Simulink. By achieving this step the integration of the BB with layer 3 (gRPC framework) is validated.

6.3 COTS platform

6.3.1 Functionalities
BB11 for COTS platform consisted in the design/development of a hypervisor technology allowing the concurrent
execution of multiple operating systems (“Multi-OS) with different levels of criticality (see Figure 46).

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 63 of 67

Figure 46: Hypervisor technology scheme.

In particular, the work aimed at running both the traditional general-purpose operating systems with model-based design
tools (e.g. Windows or Linux) and real-time operating systems (e.g. VxWorks, ERIKA Enterprise) on the same platform
at the same time. The challenge has been the design of proper isolation for preventing the former operating systems
from interfering in the real-time control performance.
The features provided by the implementation are:

● Running on COTS x86 multi-core hardware (i.e. no specific hardware requested)
● Concurrent execution of multiple operating systems with different criticality through hypervisor technology
● Real-time performance of the control part
● Open and modular API (based on Google’s gRPC) for interfacing with the system
● Integration with model-based design tools (i.e. Simulink) for automatic code generation

6.3.2 Implementation aspects

At the lowest level, the software architecture consists of a hypervisor for partitioning the hardware resources among the
different operating systems. The selection of the specific hypervisor has been topic of a careful investigation. Among
the possible open-source hypervisors (namely: Jailhouse1, Xen2, KVM3), BB11 selected Xen for the following reasons:

● It allows to run unmodified operating systems (e.g. Windows)
● The latest versions feature the “null scheduler” for real-time performance.

The hypervisor provided a high degree of flexibility for adapting this solution through different configurations. The first
configuration (shown in the next Figure) consisted of the Windows operating system running the Simulink design tool,
and the ERIKA Enterprise RTOS4 running the control code automatically generated from Simulink. To reach this
objective, the following components have been developed (see Figure 47):

● API based on Google’s gRPC technology5 for interfacing the ERIKA part with the Simulink tool (or with ad-hoc
tools for inspecting and monitoring the execution)

1 https://github.com/siemens/jailhouse
2 https://xenproject.org/
3 https://www.linux-kvm.org/page/Main_Page
4 https://www.erika-enterprise.com/
5 https://grpc.io/

https://github.com/siemens/jailhouse
https://xenproject.org/
https://www.linux-kvm.org/page/Main_Page
https://www.erika-enterprise.com/
https://grpc.io/

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 64 of 67

● Driver for Intel i210 Ethernet network card for ERIKA Enterprise
● SOEM open-source EtherCAT master stack ported on ERIKA for controlling EtherCAT slaves
● Simulink support for automatic code generation and deployment through the gRPC API

A demo of this configuration is available on YouTube: http://y2u.be/jtVdTYgxZU4.
Proper installation instructions about how to configure the system have been made available on ERIKA’s wiki pages:
http://www.erika-enterprise.com/wiki/index.php?title=EtherCAT_Master

Figure 47: First configuration of the considered hypervisor technology.

The second configuration (shown in Figure 48) was developed for supporting Pilot 3 by IMA, and it consists of multiple
instances of Windriver VxWorks 6.9 executing concurrently on the hypervisor. The work consisted in porting the VxWorks
BSP on top of the machine exposed by the Xen hypervisor.

Figure 48: Second configuration of the considered hypervisor technology.

http://y2u.be/jtVdTYgxZU4
http://www.erika-enterprise.com/wiki/index.php?title=EtherCAT_Master

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 65 of 67

7 Conclusions

7.1 General conclusion remarks

The I-MECH project aims at the development of smart mechatronics systems by means of hardware and software
Building Blocks. The Building Blocks have been developed to work within the I-MECH platform, but most of them can
be easily adapted to brown field applications. The Building Blocks developed in the framework of the Work Package 4
are all located in the control layer, that is the layer 2, of the I-MECH platform, and they can help in the development of
smart controllers for new, or already existing, mechatronic systems.
These Building Blocks can work as standalone blocks or joint to other Building Blocks developed in the I-MECH project.
They have been developed in MATLAB/Simulink, but FMUs as well as C/C++ blocks can be easily obtained by means
of Code Generation applications.
The implementation and integration of the Building Blocks developed in WP4 in Pilots, Use cases and Demonstrators is
in progress and this activity will continue until the end of the project

7.2 Contribution beyond the state of the art

The contribution beyond the state of the art of the Building Blocks developed inside the Work Package 4 has been
shown in this document. The BB7 (Vibration control in mechanically compliant systems) that has been developed in
Task 4.4 of WP4, brings innovative solution in the control of mechatronics systems affected by vibrations and/or
oscillations (example of these systems are over-head cranes, ,etc.). The BB8 (Robust motion control strategies) that
has been developed in Task 4.5 of WP4, brings solution from the university world to the industrial field related to the
robust tuning strategies for MIMO systems. The BB9 (Iterative and repetitive control methods) that has been developed
in Task 4.6 of WP4, brings new solution related to the control of mechatronics systems affected by repetitive and/or
periodic disturbances, as well as systems that must perform repetitive tasks. Finally, BB11 (Advanced motion control
algorithms and software for predictable multi-many core platforms), that has been developed in Task 4.7 of WP4, brings
up-to-date solutions for the management and control of systems by using multi-many cores platforms.
The Building Blocks mentioned above have been validated by following a procedure defined inside the I-MECH project
that consists of a series of steps to reach the goal of a performing BB. The validation process starts from a MIL step to
reach a HIL final step (intermediate steps can be SIL and PIL) before to be integrated in Pilots, Demonstrators or Use
Cases.

7.3 Dissemination and exploitation

The work that has been done in Work Package 4 brought to several scientific publications that are listed in this document.
Videos prepared by BB7, BB8, BB9 and BB11 owners have been shown during the ECSEL Symposium in June 2019.
The I-MECH Newsletter (https://www.i-mech.eu/publications/dissemination-material/) is released every three months
and it shows the status of the work for each BB. Seminars and Webinars will be done before the end of the project to
show the techniques developed in the framework of the I.MECH project. The dissemination and exploitation work will
work until the end of the project and it is managed by WP8.

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 66 of 67

8 Bibliography

Number Reference

[1] M. Giacomelli, F. Padula, L. Simoni, A. Visioli, "Simplified input-output inversion control of a double
pendulum overhead crane for residual oscillations reduction", Mechatronics, Vol. 56, pp. 37-47, 2018.

[2] M. Giacomelli, M. Faroni, D. Gorni, A. Marini, L. Simoni, A. Visioli, “Model predictive control for operator-
in-the-loop overhead cranes”, 23rd International Conference on Emerging Technologies and Factory
Automation (ETFA), pp. 589-596, 2018.

[3] M. Giacomelli, D. Colombo, M. Faroni, O. Schmidt, L. Simoni, A. Visioli, “Comparison of linear and
nonlinear MPC on Operator-In-the-Loop overhead cranes”, 7th International Conference on Control,
Mechatronics and Automation, Delft (NL), 2019.

[4] M. Giacomelli, M. Faroni, D. Gorni, A. Marini, L. Simoni, A. Visioli, “MPC-PID control of operator-in-the-
loop overhead cranes: a practical approach”, 7th International Conference on Systems and Control,
Valencia (E), 2018.

[5] M. Schlegel, M. Goubej, “Feature-based parameterization of input shaping filters with time delays”, 9th
IFAC Workshop on Time Delay Systems, 2010

[6] M. Goubej, “Robust control of flexible electromechanical systems”, PhD thesis, University of West
Bohemia, 2014

[7] M. Goubej, “Fundamental performance limitations in PID controlled elastic drive systems”, IEEE/ASME
International Conference on Advanced Intelligent Mechatronics, 2016.

[8] M. Goubej, V. Helma, “Vibration damping in gantry crane systems: Finite horizon optimal control
approach”, IEEE International Conference on Emerging Technologies and Factory Automation, 2019.

[9] M. Goubej, T. Vyhlidal, M. Schlegel, “Frequency-weighted H2 optimization of multi-mode input shaper”,
submitted to Automatica, 2019

[10] I.R. de Argandona, M. Zatarain, A. Illarramendi, J.L. Azpeitia, “Improvement of the performance in
machine tools by means of state space control strategies”, IEEE Conference on Decision and Control,
2005.

[11] M. Goubej, Fundamental performance limitations in PID controlled elastic drive systems”, IEEE/ASME
International Conference on Advanced Intelligent Mechatronics, 2016.

[12] V. Helma, M. Goubej, O. Ježek, “Acceleration Feedback in PID controlled elastic drive systems”, IFAC
Conference on Advances in PID Control, 2018.

[13] V. Helma, M. Goubej, “Acceleration Feedback in PID Controlled Elastic Drive Systems”, 3rd IFAC
Conference on Advances in PID Control, 2018.

[14] M. Schlegel, P. Medvecová, “Design of PI Controllers: H-infinity region approach“, 15th IFAC Conference
on Programmable devices and Embedded Systems, 2018.

[15] M. Goubej, M. Schlegel, “PID plus Repetitive Control Design: H-infinity regions approach“, 22nd IEEE
Conference on Process Control, 2019.

[16] M. Goubej, M. Schlegel, T. Vyhlídal, “Robust controller design for feedback architectures with signal
shapers“, submitted to IFAC World Congress 2020.

[17] N. Mooren, G. Witvoet, T. Oomen, “From batch-to-batch to online learning control: Experimental motion
control case study”, Joint Conference 8th IFAC Symposium on Mechatronic Systems and 11th IFAC
Symposium on Nonlinear Control Systems, 2019.

[18] N. Mooren, G. Witvoet, T. Oomen, “Feedforward motion control: From batch-to-batch to online parameter
estimation”, American Control Conference, pp. 947-952, 2019.

[19] J. Madariaga, L. G. Uriarte, I. Ruíz de Argandoña, J. L. Azpeitia and J. C. Rodríguez de Yurre, “Machine
tool tracking error reduction in complex trajectories through anticipatory ILC”, Spring ASPE Topical
Meeting: Control of Precision Systems, 2010.

[20] M. Goubej, M. Schlegel, “PI plus RC design: H-infinity regions approach”, IEEE International Conference
on Process Control, 2019.

Doc ID 19072301R04

Doc Creation Date 19 Jul 2019

Doc Revision R04

Doc Revision Date 16 Jan 2020

Doc Status FINAL

© 2020 ECSEL Joint Undertaking. – Print Date 24 jan 2020 PUBLIC Page 67 of 67

[21] M. Schlegel, P. Medvecová, “Design of PID Controllers: H-infinity regions approach”, 15th IFAC
Conference on Programmable Devices and Embedded Systems, 2018.

[22] D. A. Bristow, M. Tharayil, A. G. Alleyne, “A survey of iterative learning control”, IEEE control systems
magazine, Vol. 26, pp. 96-114, 2006.

[23] J. Bolder, T. Oomen, “Rational basis functions in iterative learning control - With experimental verification
on a motion system”, IEEE Transactions on Control Systems Technology, Vol. 23, 722-729, 2015.

[24] J. van de Wijdeven, O. H. Bosgra, “Using basis functions in iterative learning control: analysis and
design theory”, International Journal of Control, Vol. 83, 661-675, 2010.

[25] M. Goubej, S. Meeusen, N. Mooren, T. Oomen, “Iterative Learning Control in high-performance motion
systems: From theory to implementation”, 24th IEEE Conference on Emerging Technologies and
Factory Automation, 2019.

[26] N. Mooren, G. Witvoet, I. Acan, J. Kooijman, T. Oomen, “Suppressing Position-Dependent disturbances
in repetitive control: With applications to a substrate carrier system”, Submitted.

Acknowledgement

This project has received funding from the Electronic Component Systems for European
Leadership Joint Undertaking under grant agreement No 737453. This Joint Undertaking
receives support from the European Union’s Horizon 2020 research and innovation
program and Netherlands, Czech Republic, Latvia, Spain, Greece, Portugal, Belgium, Italy,
France, Ireland

